一种新的基于Levy飞行轨迹的蚱蜢多目标优化算法

D. Mokeddem, Dallel Nasri
{"title":"一种新的基于Levy飞行轨迹的蚱蜢多目标优化算法","authors":"D. Mokeddem, Dallel Nasri","doi":"10.1109/EDiS49545.2020.9296480","DOIUrl":null,"url":null,"abstract":"This work proposes a new improved version of the nature-inspired multi-objective grasshopper optimization algorithm (MOGOA), based on a Levy flight method and called the Levy flight trajectory-based multi-objective grasshopper optimization algorithm (LMOGOA). It is worth mentioning that, the Levy flight trajectory is applied for the first time to enhance MOGOA algorithm by increasing the diversity of solution, avoiding premature convergence and local optima stagnation. The main advantage of LMOGOA is fast convergence speed to the true Pareto-optimal front while maintaining good diversity of solutions. To benchmark the performance of the proposed algorithm, a set of diverse standard multi-objective test problems is utilized. Results show that the proposed LMOGOA significantly outperforms the standard MOGOA algorithm.","PeriodicalId":119426,"journal":{"name":"2020 Second International Conference on Embedded & Distributed Systems (EDiS)","volume":"213 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A new Levy Flight Trajectory-Based Grasshopper optimization Algorithm for Multi-objective optimization Problems\",\"authors\":\"D. Mokeddem, Dallel Nasri\",\"doi\":\"10.1109/EDiS49545.2020.9296480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes a new improved version of the nature-inspired multi-objective grasshopper optimization algorithm (MOGOA), based on a Levy flight method and called the Levy flight trajectory-based multi-objective grasshopper optimization algorithm (LMOGOA). It is worth mentioning that, the Levy flight trajectory is applied for the first time to enhance MOGOA algorithm by increasing the diversity of solution, avoiding premature convergence and local optima stagnation. The main advantage of LMOGOA is fast convergence speed to the true Pareto-optimal front while maintaining good diversity of solutions. To benchmark the performance of the proposed algorithm, a set of diverse standard multi-objective test problems is utilized. Results show that the proposed LMOGOA significantly outperforms the standard MOGOA algorithm.\",\"PeriodicalId\":119426,\"journal\":{\"name\":\"2020 Second International Conference on Embedded & Distributed Systems (EDiS)\",\"volume\":\"213 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Second International Conference on Embedded & Distributed Systems (EDiS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDiS49545.2020.9296480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Second International Conference on Embedded & Distributed Systems (EDiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDiS49545.2020.9296480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于Levy飞行方法的基于自然的多目标蚱蜢优化算法(MOGOA)的新改进版本,称为Levy飞行轨迹的多目标蚱蜢优化算法(LMOGOA)。值得一提的是,首次将Levy飞行轨迹应用于MOGOA算法,增加了解的多样性,避免了过早收敛和局部最优停滞。LMOGOA的主要优点是收敛到真帕累托最优前沿的速度快,同时保持了较好的解的多样性。为了测试该算法的性能,采用了一组不同的标准多目标测试问题。结果表明,所提出的LMOGOA算法明显优于标准MOGOA算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new Levy Flight Trajectory-Based Grasshopper optimization Algorithm for Multi-objective optimization Problems
This work proposes a new improved version of the nature-inspired multi-objective grasshopper optimization algorithm (MOGOA), based on a Levy flight method and called the Levy flight trajectory-based multi-objective grasshopper optimization algorithm (LMOGOA). It is worth mentioning that, the Levy flight trajectory is applied for the first time to enhance MOGOA algorithm by increasing the diversity of solution, avoiding premature convergence and local optima stagnation. The main advantage of LMOGOA is fast convergence speed to the true Pareto-optimal front while maintaining good diversity of solutions. To benchmark the performance of the proposed algorithm, a set of diverse standard multi-objective test problems is utilized. Results show that the proposed LMOGOA significantly outperforms the standard MOGOA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信