{"title":"商业建筑电网-交互光伏-电池-柴油系统的选型与运行控制","authors":"L. Moji, K. Kusakana, B. Numbi","doi":"10.1109/ENERGYCon48941.2020.9236449","DOIUrl":null,"url":null,"abstract":"The increasing installations of renewable hybrid energy systems in commercial buildings require system sizing to ensure that the designed hybrid system will meet the load demand of a targeted commercial building with minimum life cycle cost. In the commercial sector, photovoltaic renewable is preferred because both its generation and consumption take place during the day. Optimal sizing techniques are required for designing reliable and economical hybrid energy systems. This paper presents optimal sizing of grid-connected hybrid photovoltaic-battery-diesel energy system that meets the load demand of a targeted commercial building with minimum life cycle cost using HOMER software. For the proposed hybrid system, results indicate that 18 kW photovoltaic-6 batteries-15 kW inverter provides the economic system while load following dispatch strategy gives a life cycle cost of $85195 that is lower than $86847 using cycle charging alternative.","PeriodicalId":156687,"journal":{"name":"2020 6th IEEE International Energy Conference (ENERGYCon)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sizing and Operation Control of a Grid-Interactive Photovoltaic-Battery-Diesel System for Commercial Buildings\",\"authors\":\"L. Moji, K. Kusakana, B. Numbi\",\"doi\":\"10.1109/ENERGYCon48941.2020.9236449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing installations of renewable hybrid energy systems in commercial buildings require system sizing to ensure that the designed hybrid system will meet the load demand of a targeted commercial building with minimum life cycle cost. In the commercial sector, photovoltaic renewable is preferred because both its generation and consumption take place during the day. Optimal sizing techniques are required for designing reliable and economical hybrid energy systems. This paper presents optimal sizing of grid-connected hybrid photovoltaic-battery-diesel energy system that meets the load demand of a targeted commercial building with minimum life cycle cost using HOMER software. For the proposed hybrid system, results indicate that 18 kW photovoltaic-6 batteries-15 kW inverter provides the economic system while load following dispatch strategy gives a life cycle cost of $85195 that is lower than $86847 using cycle charging alternative.\",\"PeriodicalId\":156687,\"journal\":{\"name\":\"2020 6th IEEE International Energy Conference (ENERGYCon)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 6th IEEE International Energy Conference (ENERGYCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ENERGYCon48941.2020.9236449\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 6th IEEE International Energy Conference (ENERGYCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENERGYCon48941.2020.9236449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sizing and Operation Control of a Grid-Interactive Photovoltaic-Battery-Diesel System for Commercial Buildings
The increasing installations of renewable hybrid energy systems in commercial buildings require system sizing to ensure that the designed hybrid system will meet the load demand of a targeted commercial building with minimum life cycle cost. In the commercial sector, photovoltaic renewable is preferred because both its generation and consumption take place during the day. Optimal sizing techniques are required for designing reliable and economical hybrid energy systems. This paper presents optimal sizing of grid-connected hybrid photovoltaic-battery-diesel energy system that meets the load demand of a targeted commercial building with minimum life cycle cost using HOMER software. For the proposed hybrid system, results indicate that 18 kW photovoltaic-6 batteries-15 kW inverter provides the economic system while load following dispatch strategy gives a life cycle cost of $85195 that is lower than $86847 using cycle charging alternative.