乐观复制的最优并发控制

Weihan Wang, C. Amza
{"title":"乐观复制的最优并发控制","authors":"Weihan Wang, C. Amza","doi":"10.1109/ICDCS.2009.71","DOIUrl":null,"url":null,"abstract":"Concurrency control is a core component in optimistic replication systems. To detect concurrent updates, the system associates each replicated object with metadata, such as, version vectors or causal graphs exchanged on synchronization opportunities. However, the size of such metadata increases at least linearly with the number of active sites. With recent trends in cloud computing, multi-regional collaboration, and mobile networks, the number of sites within a single replication system becomes very large. This imposes substantial overhead in communication and computation on every site. In this paper, we first present three version vector implementations that significantly reduce the cost of vector exchange by incrementally transferring vector elements. Basic rotating vectors (BRV) support systems providing no conflict reconciliation, whereas conflict rotating vectors (CRV) extend BRV to overcome this limitation. Skip rotating vectors (SRV) based on CRV further reduce data transmission. We show that both BRV and SRV are optimal implementations of version vectors, which, in turn, have minimal storage complexity among all known concurrency control schemes for state-transfer systems. We then present a causal graph exchange algorithm for operation-transfer systems with optimal communication overhead. All these algorithms adopt network pipelining to reduce running time.","PeriodicalId":387968,"journal":{"name":"2009 29th IEEE International Conference on Distributed Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On Optimal Concurrency Control for Optimistic Replication\",\"authors\":\"Weihan Wang, C. Amza\",\"doi\":\"10.1109/ICDCS.2009.71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concurrency control is a core component in optimistic replication systems. To detect concurrent updates, the system associates each replicated object with metadata, such as, version vectors or causal graphs exchanged on synchronization opportunities. However, the size of such metadata increases at least linearly with the number of active sites. With recent trends in cloud computing, multi-regional collaboration, and mobile networks, the number of sites within a single replication system becomes very large. This imposes substantial overhead in communication and computation on every site. In this paper, we first present three version vector implementations that significantly reduce the cost of vector exchange by incrementally transferring vector elements. Basic rotating vectors (BRV) support systems providing no conflict reconciliation, whereas conflict rotating vectors (CRV) extend BRV to overcome this limitation. Skip rotating vectors (SRV) based on CRV further reduce data transmission. We show that both BRV and SRV are optimal implementations of version vectors, which, in turn, have minimal storage complexity among all known concurrency control schemes for state-transfer systems. We then present a causal graph exchange algorithm for operation-transfer systems with optimal communication overhead. All these algorithms adopt network pipelining to reduce running time.\",\"PeriodicalId\":387968,\"journal\":{\"name\":\"2009 29th IEEE International Conference on Distributed Computing Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 29th IEEE International Conference on Distributed Computing Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS.2009.71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 29th IEEE International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2009.71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

并发控制是乐观复制系统的核心组成部分。为了检测并发更新,系统将每个复制对象与元数据相关联,例如版本向量或在同步机会上交换的因果图。但是,此类元数据的大小至少与活动站点的数量呈线性增长。随着云计算、多区域协作和移动网络的最新趋势,单个复制系统中的站点数量变得非常大。这给每个站点带来了大量的通信和计算开销。在本文中,我们首先提出了三个版本向量实现,它们通过增量传输向量元素显著降低了向量交换的成本。基本旋转向量(BRV)支持系统不提供冲突调和,而冲突旋转向量(CRV)扩展了BRV以克服这一局限性。基于CRV的跳过旋转矢量(SRV)进一步减少了数据传输。我们证明了BRV和SRV都是版本向量的最佳实现,而版本向量在所有已知的状态转移系统并发控制方案中具有最小的存储复杂度。然后,我们提出了具有最优通信开销的操作转移系统的因果图交换算法。这些算法都采用了网络流水线,减少了运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Optimal Concurrency Control for Optimistic Replication
Concurrency control is a core component in optimistic replication systems. To detect concurrent updates, the system associates each replicated object with metadata, such as, version vectors or causal graphs exchanged on synchronization opportunities. However, the size of such metadata increases at least linearly with the number of active sites. With recent trends in cloud computing, multi-regional collaboration, and mobile networks, the number of sites within a single replication system becomes very large. This imposes substantial overhead in communication and computation on every site. In this paper, we first present three version vector implementations that significantly reduce the cost of vector exchange by incrementally transferring vector elements. Basic rotating vectors (BRV) support systems providing no conflict reconciliation, whereas conflict rotating vectors (CRV) extend BRV to overcome this limitation. Skip rotating vectors (SRV) based on CRV further reduce data transmission. We show that both BRV and SRV are optimal implementations of version vectors, which, in turn, have minimal storage complexity among all known concurrency control schemes for state-transfer systems. We then present a causal graph exchange algorithm for operation-transfer systems with optimal communication overhead. All these algorithms adopt network pipelining to reduce running time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信