用分环多项式分解

E. Bach, J. Shallit
{"title":"用分环多项式分解","authors":"E. Bach, J. Shallit","doi":"10.1109/SFCS.1985.24","DOIUrl":null,"url":null,"abstract":"This paper discusses some new integer factoring methods involving cyclotomic polynomials. There are several polynomials f(X) known to have the following property: given a multiple of f(p), we can quickly split any composite number that has p as a prime divisor. For example -- taking f(X) to be X- 1 -- a multiple of p - 1 will suffice to easily factor any multiple of p, using an algorithm of Pollard. Other methods (due to Guy, Williams, and Judd) make use of X + 1, X2 + 1, and X2 ± X + 1. We show that one may take f to be Φk, the k-th cyclotomic polynomial. In constrast to the ad hoc methods used previously, we give a universal construction based on algebraic number theory that subsumes all the above results. Assuming generalized Riemann hypotheses, the expected time to factor N (given a multiple E of Φk(p)) is bounded by a polynomial in k, logE, and logN.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"66","resultStr":"{\"title\":\"Factoring with cyclotomic polynomials\",\"authors\":\"E. Bach, J. Shallit\",\"doi\":\"10.1109/SFCS.1985.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses some new integer factoring methods involving cyclotomic polynomials. There are several polynomials f(X) known to have the following property: given a multiple of f(p), we can quickly split any composite number that has p as a prime divisor. For example -- taking f(X) to be X- 1 -- a multiple of p - 1 will suffice to easily factor any multiple of p, using an algorithm of Pollard. Other methods (due to Guy, Williams, and Judd) make use of X + 1, X2 + 1, and X2 ± X + 1. We show that one may take f to be Φk, the k-th cyclotomic polynomial. In constrast to the ad hoc methods used previously, we give a universal construction based on algebraic number theory that subsumes all the above results. Assuming generalized Riemann hypotheses, the expected time to factor N (given a multiple E of Φk(p)) is bounded by a polynomial in k, logE, and logN.\",\"PeriodicalId\":296739,\"journal\":{\"name\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1985-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"66\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1985.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 66

摘要

本文讨论了一些新的涉及环形多项式的整数分解方法。已知有几个多项式f(X)具有以下性质:给定f(p)的倍数,我们可以快速分解任何以p为质因数的合数。例如,取f(X) = X- 1, p - 1的倍数就足以很容易地分解p的任何倍数,使用波拉德算法。其他方法(由于Guy, Williams和Judd)利用X + 1, X2 + 1和X2±X + 1。我们证明可以取f为Φk,即第k个分环多项式。与以前使用的特殊方法相比,我们给出了一个基于代数数论的通用结构,包含了上述所有结果。假设广义黎曼假设,分解N的期望时间(给定E的倍数Φk(p))以k、logE和logN的多项式为界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factoring with cyclotomic polynomials
This paper discusses some new integer factoring methods involving cyclotomic polynomials. There are several polynomials f(X) known to have the following property: given a multiple of f(p), we can quickly split any composite number that has p as a prime divisor. For example -- taking f(X) to be X- 1 -- a multiple of p - 1 will suffice to easily factor any multiple of p, using an algorithm of Pollard. Other methods (due to Guy, Williams, and Judd) make use of X + 1, X2 + 1, and X2 ± X + 1. We show that one may take f to be Φk, the k-th cyclotomic polynomial. In constrast to the ad hoc methods used previously, we give a universal construction based on algebraic number theory that subsumes all the above results. Assuming generalized Riemann hypotheses, the expected time to factor N (given a multiple E of Φk(p)) is bounded by a polynomial in k, logE, and logN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信