精神卫生站使用变压器的原因分类

Muskan Garg, Simranjeet Kaur, Ritika Bhardwaj, Aastha Jain, Chandni Saxena
{"title":"精神卫生站使用变压器的原因分类","authors":"Muskan Garg, Simranjeet Kaur, Ritika Bhardwaj, Aastha Jain, Chandni Saxena","doi":"10.1145/3574318.3574334","DOIUrl":null,"url":null,"abstract":"With recent developments in digitization of clinical psychology, NLP research community has revolutionized the field of mental health detection on social media. Existing research in mental health analysis revolves around the cross-sectional studies to classify users’ intent on social media. For in-depth analysis, we investigate existing classifiers to solve the problem of causal categorization which suggests the inefficiency of learning based methods due to limited training samples. To handle this challenge, we use transformer models and demonstrate the efficacy of a pre-trained transfer learning on \"CAMS\" dataset [4]. The experimental result improves the accuracy and depicts the importance of identifying cause-and-effect relationships in the underlying text.","PeriodicalId":270700,"journal":{"name":"Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal Categorization of Mental Health Posts using Transformers\",\"authors\":\"Muskan Garg, Simranjeet Kaur, Ritika Bhardwaj, Aastha Jain, Chandni Saxena\",\"doi\":\"10.1145/3574318.3574334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With recent developments in digitization of clinical psychology, NLP research community has revolutionized the field of mental health detection on social media. Existing research in mental health analysis revolves around the cross-sectional studies to classify users’ intent on social media. For in-depth analysis, we investigate existing classifiers to solve the problem of causal categorization which suggests the inefficiency of learning based methods due to limited training samples. To handle this challenge, we use transformer models and demonstrate the efficacy of a pre-trained transfer learning on \\\"CAMS\\\" dataset [4]. The experimental result improves the accuracy and depicts the importance of identifying cause-and-effect relationships in the underlying text.\",\"PeriodicalId\":270700,\"journal\":{\"name\":\"Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3574318.3574334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th Annual Meeting of the Forum for Information Retrieval Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3574318.3574334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着临床心理学数字化的发展,NLP研究界已经彻底改变了社交媒体上的心理健康检测领域。现有的心理健康分析研究围绕着对社交媒体用户意图进行分类的横断面研究展开。为了深入分析,我们研究了现有的分类器来解决因果分类的问题,该问题表明基于学习的方法由于训练样本有限而效率低下。为了应对这一挑战,我们使用了变压器模型,并在“CAMS”数据集[4]上演示了预训练迁移学习的有效性。实验结果提高了准确性,并描述了在底层文本中识别因果关系的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal Categorization of Mental Health Posts using Transformers
With recent developments in digitization of clinical psychology, NLP research community has revolutionized the field of mental health detection on social media. Existing research in mental health analysis revolves around the cross-sectional studies to classify users’ intent on social media. For in-depth analysis, we investigate existing classifiers to solve the problem of causal categorization which suggests the inefficiency of learning based methods due to limited training samples. To handle this challenge, we use transformer models and demonstrate the efficacy of a pre-trained transfer learning on "CAMS" dataset [4]. The experimental result improves the accuracy and depicts the importance of identifying cause-and-effect relationships in the underlying text.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信