基于格兰杰因果推理的多源领域自适应情感分类

Min Yang, Ying Shen, Xiaojun Chen, Chengming Li
{"title":"基于格兰杰因果推理的多源领域自适应情感分类","authors":"Min Yang, Ying Shen, Xiaojun Chen, Chengming Li","doi":"10.1145/3397271.3401314","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a multi-source domain adaptation method with a Granger-causal objective (MDA-GC) for cross-domain sentiment classification. Specifically, for each source domain, we build an expert model by using a novel sentiment-guided capsule network, which captures the domain invariant knowledge that bridges the knowledge gap between the source and target domains. Then, an attention mechanism is devised to assign importance weights to a mixture of experts, each of which specializes in a different source domain. In addition, we propose a Granger causal objective to make the weights assigned to individual experts correlate strongly with their contributions to the decision at hand. Experimental results on a benchmark dataset demonstrate that the proposed MDA-GC model significantly outperforms the compared methods.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-source Domain Adaptation for Sentiment Classification with Granger Causal Inference\",\"authors\":\"Min Yang, Ying Shen, Xiaojun Chen, Chengming Li\",\"doi\":\"10.1145/3397271.3401314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a multi-source domain adaptation method with a Granger-causal objective (MDA-GC) for cross-domain sentiment classification. Specifically, for each source domain, we build an expert model by using a novel sentiment-guided capsule network, which captures the domain invariant knowledge that bridges the knowledge gap between the source and target domains. Then, an attention mechanism is devised to assign importance weights to a mixture of experts, each of which specializes in a different source domain. In addition, we propose a Granger causal objective to make the weights assigned to individual experts correlate strongly with their contributions to the decision at hand. Experimental results on a benchmark dataset demonstrate that the proposed MDA-GC model significantly outperforms the compared methods.\",\"PeriodicalId\":252050,\"journal\":{\"name\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397271.3401314\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于granger -因果目标(MDA-GC)的多源域自适应方法,用于跨域情感分类。具体而言,对于每个源域,我们使用一种新的情感引导胶囊网络构建专家模型,该网络捕获域不变知识,弥合源域和目标域之间的知识差距。然后,设计了一种注意机制,为每个专家专攻不同的源领域的混合专家分配重要性权重。此外,我们提出了一个格兰杰因果目标,使分配给个别专家的权重与他们对手头决策的贡献密切相关。在一个基准数据集上的实验结果表明,所提出的MDA-GC模型明显优于所比较的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-source Domain Adaptation for Sentiment Classification with Granger Causal Inference
In this paper, we propose a multi-source domain adaptation method with a Granger-causal objective (MDA-GC) for cross-domain sentiment classification. Specifically, for each source domain, we build an expert model by using a novel sentiment-guided capsule network, which captures the domain invariant knowledge that bridges the knowledge gap between the source and target domains. Then, an attention mechanism is devised to assign importance weights to a mixture of experts, each of which specializes in a different source domain. In addition, we propose a Granger causal objective to make the weights assigned to individual experts correlate strongly with their contributions to the decision at hand. Experimental results on a benchmark dataset demonstrate that the proposed MDA-GC model significantly outperforms the compared methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信