{"title":"具有Nakagami-m衰落信道的MRC分集组合放大前向合作网络分析","authors":"A. Mohammed, Li Yu, Manar Al-Kali, Desheng Wang","doi":"10.11591/IJEECS.V16.I3.PP546-552","DOIUrl":null,"url":null,"abstract":"In this paper we study the effect of diversity combining for Nakagami -m fading Channels in the amplify-and-forward cooperative networks.We derive the cumulative density function (CDF), probability density function (PDF) and moment generating function (MGF) for the multiple relay amplify-and-forward network with single half duplex channel maximal ratio combiner (MRC). In this network we investigate the cases of MRC at the destination, as well derive the exact Symbol Error Rate (SER) of M-ary phase-shift keying (M-PSK), and quadrature amplitude modulation (M-QAM) in Nakagami -m fading environment. We present a comparison between M-PSK and M-QAM modulation schemes in some representative scenarios where an arbitrary number of cooperative relays is considered.","PeriodicalId":247642,"journal":{"name":"TELKOMNIKA Indonesian Journal of Electrical Engineering","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of Amplify-and-Forward Cooperative Networks with Nakagami-m fading Channels For MRC Diversity Combining\",\"authors\":\"A. Mohammed, Li Yu, Manar Al-Kali, Desheng Wang\",\"doi\":\"10.11591/IJEECS.V16.I3.PP546-552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the effect of diversity combining for Nakagami -m fading Channels in the amplify-and-forward cooperative networks.We derive the cumulative density function (CDF), probability density function (PDF) and moment generating function (MGF) for the multiple relay amplify-and-forward network with single half duplex channel maximal ratio combiner (MRC). In this network we investigate the cases of MRC at the destination, as well derive the exact Symbol Error Rate (SER) of M-ary phase-shift keying (M-PSK), and quadrature amplitude modulation (M-QAM) in Nakagami -m fading environment. We present a comparison between M-PSK and M-QAM modulation schemes in some representative scenarios where an arbitrary number of cooperative relays is considered.\",\"PeriodicalId\":247642,\"journal\":{\"name\":\"TELKOMNIKA Indonesian Journal of Electrical Engineering\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"TELKOMNIKA Indonesian Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/IJEECS.V16.I3.PP546-552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJEECS.V16.I3.PP546-552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Amplify-and-Forward Cooperative Networks with Nakagami-m fading Channels For MRC Diversity Combining
In this paper we study the effect of diversity combining for Nakagami -m fading Channels in the amplify-and-forward cooperative networks.We derive the cumulative density function (CDF), probability density function (PDF) and moment generating function (MGF) for the multiple relay amplify-and-forward network with single half duplex channel maximal ratio combiner (MRC). In this network we investigate the cases of MRC at the destination, as well derive the exact Symbol Error Rate (SER) of M-ary phase-shift keying (M-PSK), and quadrature amplitude modulation (M-QAM) in Nakagami -m fading environment. We present a comparison between M-PSK and M-QAM modulation schemes in some representative scenarios where an arbitrary number of cooperative relays is considered.