基于新颖RNS表示的模集{2n−1,2n, 2n+1}的统一加法结构

S. Timarchi, M. Fazlali, S. Cotofana
{"title":"基于新颖RNS表示的模集{2n−1,2n, 2n+1}的统一加法结构","authors":"S. Timarchi, M. Fazlali, S. Cotofana","doi":"10.1109/ICCD.2010.5647761","DOIUrl":null,"url":null,"abstract":"Given that modulo 2<sup>n</sup>±1 are the most popular moduli in Residue Number Systems (RNS), a large variety of modulo 2<sup>n</sup>±1 adder designs have been proposed based on different number representations. However, in most of the cases, these encodings do not allow the implementation of a unified adder for all the moduli of the form 2<sup>n</sup>−1, 2<sup>n</sup>, and 2<sup>n</sup>+1. In this paper, we address the modular addition issue by introducing a new encoding, namely, the stored-unibit RNS. Moreover, we demonstrate how the proposed representation can be utilized to derive a unified design for the moduli set {2<sup>n</sup>−1,2<sup>n</sup>,2<sup>n</sup>+1}. Our approach enables a unified design for the moduli set adders, which opens the possibility to design reliable RNS processors with low hardware redundancy. Moreover, the proposed representation can be utilized in conjunction with any fast state of the art binary adder without requiring any extra hardware for end-around-carry addition.","PeriodicalId":182350,"journal":{"name":"2010 IEEE International Conference on Computer Design","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A unified addition structure for moduli set {2n−1, 2n, 2n+1} based on a novel RNS representation\",\"authors\":\"S. Timarchi, M. Fazlali, S. Cotofana\",\"doi\":\"10.1109/ICCD.2010.5647761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given that modulo 2<sup>n</sup>±1 are the most popular moduli in Residue Number Systems (RNS), a large variety of modulo 2<sup>n</sup>±1 adder designs have been proposed based on different number representations. However, in most of the cases, these encodings do not allow the implementation of a unified adder for all the moduli of the form 2<sup>n</sup>−1, 2<sup>n</sup>, and 2<sup>n</sup>+1. In this paper, we address the modular addition issue by introducing a new encoding, namely, the stored-unibit RNS. Moreover, we demonstrate how the proposed representation can be utilized to derive a unified design for the moduli set {2<sup>n</sup>−1,2<sup>n</sup>,2<sup>n</sup>+1}. Our approach enables a unified design for the moduli set adders, which opens the possibility to design reliable RNS processors with low hardware redundancy. Moreover, the proposed representation can be utilized in conjunction with any fast state of the art binary adder without requiring any extra hardware for end-around-carry addition.\",\"PeriodicalId\":182350,\"journal\":{\"name\":\"2010 IEEE International Conference on Computer Design\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Computer Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2010.5647761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Computer Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2010.5647761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

鉴于模2n±1是剩余数系统(RNS)中最常用的模,基于不同的数表示,提出了各种各样的模2n±1加法器设计。然而,在大多数情况下,这些编码不允许对形式为2n−1,2n和2n+1的所有模实现统一的加法器。在本文中,我们通过引入一种新的编码,即存储单元RNS,来解决模块化加法问题。此外,我们还演示了如何利用所提出的表示来推导模集{2n−1,2n,2n+1}的统一设计。我们的方法实现了模集加法器的统一设计,这为设计具有低硬件冗余的可靠RNS处理器提供了可能性。此外,所提出的表示法可以与任何先进的快速二进制加法器结合使用,而不需要任何额外的硬件来进行绕尾进位加法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A unified addition structure for moduli set {2n−1, 2n, 2n+1} based on a novel RNS representation
Given that modulo 2n±1 are the most popular moduli in Residue Number Systems (RNS), a large variety of modulo 2n±1 adder designs have been proposed based on different number representations. However, in most of the cases, these encodings do not allow the implementation of a unified adder for all the moduli of the form 2n−1, 2n, and 2n+1. In this paper, we address the modular addition issue by introducing a new encoding, namely, the stored-unibit RNS. Moreover, we demonstrate how the proposed representation can be utilized to derive a unified design for the moduli set {2n−1,2n,2n+1}. Our approach enables a unified design for the moduli set adders, which opens the possibility to design reliable RNS processors with low hardware redundancy. Moreover, the proposed representation can be utilized in conjunction with any fast state of the art binary adder without requiring any extra hardware for end-around-carry addition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信