数据驱动的数据中心网络安全

V. Jeyakumar, Omid Madani, Ali ParandehGheibi, Navindra Yadav
{"title":"数据驱动的数据中心网络安全","authors":"V. Jeyakumar, Omid Madani, Ali ParandehGheibi, Navindra Yadav","doi":"10.1145/2875475.2875490","DOIUrl":null,"url":null,"abstract":"Large scale datacenters are becoming the compute and data platform of large enterprises, but their scale makes them difficult to secure applications running within. We motivate this setting using a real world complex scenario, and propose a data-driven approach to taming this complexity. We discuss several machine learning problems that arise, in particular focusing on inducing so-called whitelist communication policies, from observing masses of communications among networked computing nodes. Briefly, a whitelist policy specifies which machine, or groups of machines, can talk to which. We present some of the challenges and opportunities, such as noisy and incomplete data, non-stationarity, lack of supervision, challenges of evaluation, and describe some of the approaches we have found promising.","PeriodicalId":393015,"journal":{"name":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Data Driven Data Center Network Security\",\"authors\":\"V. Jeyakumar, Omid Madani, Ali ParandehGheibi, Navindra Yadav\",\"doi\":\"10.1145/2875475.2875490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large scale datacenters are becoming the compute and data platform of large enterprises, but their scale makes them difficult to secure applications running within. We motivate this setting using a real world complex scenario, and propose a data-driven approach to taming this complexity. We discuss several machine learning problems that arise, in particular focusing on inducing so-called whitelist communication policies, from observing masses of communications among networked computing nodes. Briefly, a whitelist policy specifies which machine, or groups of machines, can talk to which. We present some of the challenges and opportunities, such as noisy and incomplete data, non-stationarity, lack of supervision, challenges of evaluation, and describe some of the approaches we have found promising.\",\"PeriodicalId\":393015,\"journal\":{\"name\":\"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2875475.2875490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2875475.2875490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

大型数据中心正在成为大型企业的计算和数据平台,但它们的规模使得它们难以保护在其中运行的应用程序。我们使用现实世界的复杂场景来激发这种设置,并提出了一种数据驱动的方法来驯服这种复杂性。我们讨论了出现的几个机器学习问题,特别关注于通过观察网络计算节点之间的大量通信来诱导所谓的白名单通信策略。简而言之,白名单策略指定哪台机器或哪组机器可以与哪台机器通信。我们提出了一些挑战和机遇,如嘈杂和不完整的数据,非平稳性,缺乏监督,评估的挑战,并描述了一些我们发现有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Driven Data Center Network Security
Large scale datacenters are becoming the compute and data platform of large enterprises, but their scale makes them difficult to secure applications running within. We motivate this setting using a real world complex scenario, and propose a data-driven approach to taming this complexity. We discuss several machine learning problems that arise, in particular focusing on inducing so-called whitelist communication policies, from observing masses of communications among networked computing nodes. Briefly, a whitelist policy specifies which machine, or groups of machines, can talk to which. We present some of the challenges and opportunities, such as noisy and incomplete data, non-stationarity, lack of supervision, challenges of evaluation, and describe some of the approaches we have found promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信