无人驾驶地面车辆和神经形态系统对大鼠恐惧条件反射的再现

Noah Zins, Hongyu An
{"title":"无人驾驶地面车辆和神经形态系统对大鼠恐惧条件反射的再现","authors":"Noah Zins, Hongyu An","doi":"10.1109/ISQED57927.2023.10129317","DOIUrl":null,"url":null,"abstract":"Deep learning accomplishes remarkable success through training with massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationship between concurrent events. This learning paradigm is referred to as associative memory. The successful implementation of associative memory potentially achieves self-learning schemes analogous to animals to resolve the challenges of deep learning. The state-of-the-art implementations of associative memory are limited to small-scale and offline paradigms. Thus, in this work, we implement associative memory learning with an Unmanned Ground Vehicle (UGV) and neuromorphic chips (Intel Loihi) for an online learning scenario. Our system reproduces the classic associative memory in rats. In specific, our system successfully reproduces the fear conditioning with no pretraining procedure and labeled datasets. In our experiments, the UGV serves as a substitute for the rats. Our UGV autonomously memorizes the cause-and-effect of the light stimulus and vibration stimulus, then exhibits a movement response. During associative memory learning, the synaptic weights are updated by Hebbian learning. The Intel Loihi chip is integrated with our online learning system for processing visual signals. Its average power usages for computing logic and memory are 30 mW and 29 mW, respectively.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reproducing Fear Conditioning of Rats with Unmanned Ground Vehicles and Neuromorphic Systems\",\"authors\":\"Noah Zins, Hongyu An\",\"doi\":\"10.1109/ISQED57927.2023.10129317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning accomplishes remarkable success through training with massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationship between concurrent events. This learning paradigm is referred to as associative memory. The successful implementation of associative memory potentially achieves self-learning schemes analogous to animals to resolve the challenges of deep learning. The state-of-the-art implementations of associative memory are limited to small-scale and offline paradigms. Thus, in this work, we implement associative memory learning with an Unmanned Ground Vehicle (UGV) and neuromorphic chips (Intel Loihi) for an online learning scenario. Our system reproduces the classic associative memory in rats. In specific, our system successfully reproduces the fear conditioning with no pretraining procedure and labeled datasets. In our experiments, the UGV serves as a substitute for the rats. Our UGV autonomously memorizes the cause-and-effect of the light stimulus and vibration stimulus, then exhibits a movement response. During associative memory learning, the synaptic weights are updated by Hebbian learning. The Intel Loihi chip is integrated with our online learning system for processing visual signals. Its average power usages for computing logic and memory are 30 mW and 29 mW, respectively.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习通过大规模标记数据集的训练取得了显著的成功。然而,对数据集的高要求阻碍了深度学习在边缘计算场景下的可行性,并且存在数据稀缺性问题。动物不是依靠标记数据,而是通过与周围环境的互动和记忆同时发生的事件之间的关系来学习。这种学习模式被称为联想记忆。联想记忆的成功实现可能实现类似于动物的自我学习方案,以解决深度学习的挑战。联想记忆的最新实现仅限于小规模和离线范例。因此,在这项工作中,我们使用无人地面车辆(UGV)和神经形态芯片(英特尔Loihi)实现了联想记忆学习,用于在线学习场景。我们的系统在老鼠身上复制了经典的联想记忆。具体来说,我们的系统在没有预训练程序和标记数据集的情况下成功地再现了恐惧条件反射。在我们的实验中,UGV作为大鼠的替代品。我们的UGV自主记忆光刺激和振动刺激的因果关系,然后表现出运动响应。在联想记忆学习过程中,突触权值通过Hebbian学习进行更新。英特尔Loihi芯片与我们的在线学习系统集成,用于处理视觉信号。其计算逻辑和内存的平均功耗分别为30兆瓦和29兆瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reproducing Fear Conditioning of Rats with Unmanned Ground Vehicles and Neuromorphic Systems
Deep learning accomplishes remarkable success through training with massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationship between concurrent events. This learning paradigm is referred to as associative memory. The successful implementation of associative memory potentially achieves self-learning schemes analogous to animals to resolve the challenges of deep learning. The state-of-the-art implementations of associative memory are limited to small-scale and offline paradigms. Thus, in this work, we implement associative memory learning with an Unmanned Ground Vehicle (UGV) and neuromorphic chips (Intel Loihi) for an online learning scenario. Our system reproduces the classic associative memory in rats. In specific, our system successfully reproduces the fear conditioning with no pretraining procedure and labeled datasets. In our experiments, the UGV serves as a substitute for the rats. Our UGV autonomously memorizes the cause-and-effect of the light stimulus and vibration stimulus, then exhibits a movement response. During associative memory learning, the synaptic weights are updated by Hebbian learning. The Intel Loihi chip is integrated with our online learning system for processing visual signals. Its average power usages for computing logic and memory are 30 mW and 29 mW, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信