{"title":"基于指令级并行性的WCET嵌套循环最小化","authors":"Y. Elloumi, M. Akil, M. Hedi","doi":"10.1109/HPCSim.2015.7237066","DOIUrl":null,"url":null,"abstract":"Several high-performance applications integrate loop bodies, which represent the most critical sections. This aspect brings two challenges. Firstly, the Worst Case Execution Time (WCET) must be determined in order to define the nested loop timing behaviour. Secondly, the challenge consists in raising the parallelism-level to enhance the performance. In particular, the Multidimensional Retiming (MR) is an important optimization approach that offers several instruction-level-parallelism solutions. Despite the fact that full parallelism allows achieving the optimal WCET, it leads to a high growth in processing cores, which is inadequate to embedded real-time implementations. The main idea of this paper consists in driving the parallelism-level rise in terms of WCET development. First, the MR parameters that correspond to the nested loops are extracted. Thereafter, the WCET is formulated in terms of parallelism level rise. Then, an optimization heuristic is proposed which identifies the parallelism level that permits respecting the WCET constraint. Our experiments indicate that the WCET prediction is accurate within an error rate of 8.54%. Second, the optimization heuristic implementations show an average improvement in number of cores of 27.18% compared to full parallel ones.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"WCET nested-loop minimization in terms of instruction-level-parallelism\",\"authors\":\"Y. Elloumi, M. Akil, M. Hedi\",\"doi\":\"10.1109/HPCSim.2015.7237066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several high-performance applications integrate loop bodies, which represent the most critical sections. This aspect brings two challenges. Firstly, the Worst Case Execution Time (WCET) must be determined in order to define the nested loop timing behaviour. Secondly, the challenge consists in raising the parallelism-level to enhance the performance. In particular, the Multidimensional Retiming (MR) is an important optimization approach that offers several instruction-level-parallelism solutions. Despite the fact that full parallelism allows achieving the optimal WCET, it leads to a high growth in processing cores, which is inadequate to embedded real-time implementations. The main idea of this paper consists in driving the parallelism-level rise in terms of WCET development. First, the MR parameters that correspond to the nested loops are extracted. Thereafter, the WCET is formulated in terms of parallelism level rise. Then, an optimization heuristic is proposed which identifies the parallelism level that permits respecting the WCET constraint. Our experiments indicate that the WCET prediction is accurate within an error rate of 8.54%. Second, the optimization heuristic implementations show an average improvement in number of cores of 27.18% compared to full parallel ones.\",\"PeriodicalId\":134009,\"journal\":{\"name\":\"2015 International Conference on High Performance Computing & Simulation (HPCS)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on High Performance Computing & Simulation (HPCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPCSim.2015.7237066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
WCET nested-loop minimization in terms of instruction-level-parallelism
Several high-performance applications integrate loop bodies, which represent the most critical sections. This aspect brings two challenges. Firstly, the Worst Case Execution Time (WCET) must be determined in order to define the nested loop timing behaviour. Secondly, the challenge consists in raising the parallelism-level to enhance the performance. In particular, the Multidimensional Retiming (MR) is an important optimization approach that offers several instruction-level-parallelism solutions. Despite the fact that full parallelism allows achieving the optimal WCET, it leads to a high growth in processing cores, which is inadequate to embedded real-time implementations. The main idea of this paper consists in driving the parallelism-level rise in terms of WCET development. First, the MR parameters that correspond to the nested loops are extracted. Thereafter, the WCET is formulated in terms of parallelism level rise. Then, an optimization heuristic is proposed which identifies the parallelism level that permits respecting the WCET constraint. Our experiments indicate that the WCET prediction is accurate within an error rate of 8.54%. Second, the optimization heuristic implementations show an average improvement in number of cores of 27.18% compared to full parallel ones.