使用在线瓶颈检测的自适应任务复制流应用程序

Yoonseo Choi, Cheng-Hong Li, D. D. Silva, A. Bivens, E. Schenfeld
{"title":"使用在线瓶颈检测的自适应任务复制流应用程序","authors":"Yoonseo Choi, Cheng-Hong Li, D. D. Silva, A. Bivens, E. Schenfeld","doi":"10.1145/2212908.2212932","DOIUrl":null,"url":null,"abstract":"In this paper we describe an approach to dynamically improve the progress of streaming applications on SMP multi-core systems. We show that run-time task duplication is an effective method for maximizing application throughput in face of changes in available computing resources. Such changes can not be fully handled by static optimizations. We derive a theoretical performance model to identify tasks in need of more computing resources. We propose two on-line algorithms that use indications from the performance model to detect computation bottlenecks. In these algorithms, a task can identify itself as a bottleneck using only its local data. The proposed technique is transparent to end programmers and portable to systems with fair scheduling. Our on-line detection algorithms can be applied to other dynamic scenarios, for example, involving run-time variation of workload.\n Our experiments using the StreamIt benchmarks [5] show that the proposed run-time task duplication achieves considerable speedups over the multi-threaded baseline on a 16-core machine and on the scenarios with dynamically changing number of processing cores. We also show that our algorithms achieve better application throughput than alternative approaches for task duplication.","PeriodicalId":430420,"journal":{"name":"ACM International Conference on Computing Frontiers","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Adaptive task duplication using on-line bottleneck detection for streaming applications\",\"authors\":\"Yoonseo Choi, Cheng-Hong Li, D. D. Silva, A. Bivens, E. Schenfeld\",\"doi\":\"10.1145/2212908.2212932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we describe an approach to dynamically improve the progress of streaming applications on SMP multi-core systems. We show that run-time task duplication is an effective method for maximizing application throughput in face of changes in available computing resources. Such changes can not be fully handled by static optimizations. We derive a theoretical performance model to identify tasks in need of more computing resources. We propose two on-line algorithms that use indications from the performance model to detect computation bottlenecks. In these algorithms, a task can identify itself as a bottleneck using only its local data. The proposed technique is transparent to end programmers and portable to systems with fair scheduling. Our on-line detection algorithms can be applied to other dynamic scenarios, for example, involving run-time variation of workload.\\n Our experiments using the StreamIt benchmarks [5] show that the proposed run-time task duplication achieves considerable speedups over the multi-threaded baseline on a 16-core machine and on the scenarios with dynamically changing number of processing cores. We also show that our algorithms achieve better application throughput than alternative approaches for task duplication.\",\"PeriodicalId\":430420,\"journal\":{\"name\":\"ACM International Conference on Computing Frontiers\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2212908.2212932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2212908.2212932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文描述了一种在SMP多核系统上动态改进流应用进程的方法。我们表明,面对可用计算资源的变化,运行时任务复制是最大化应用程序吞吐量的有效方法。静态优化无法完全处理此类更改。我们推导了一个理论性能模型来识别需要更多计算资源的任务。我们提出了两种在线算法,使用性能模型的指示来检测计算瓶颈。在这些算法中,任务可以仅使用其本地数据将自己标识为瓶颈。所提出的技术对终端程序员是透明的,并且可移植到具有公平调度的系统中。我们的在线检测算法可以应用于其他动态场景,例如,涉及工作负载的运行时变化。我们使用StreamIt基准测试的实验[5]表明,在16核机器上的多线程基线上,以及在处理核心数量动态变化的情况下,所建议的运行时任务复制实现了相当大的速度提升。我们还表明,我们的算法比其他任务复制方法实现了更好的应用程序吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive task duplication using on-line bottleneck detection for streaming applications
In this paper we describe an approach to dynamically improve the progress of streaming applications on SMP multi-core systems. We show that run-time task duplication is an effective method for maximizing application throughput in face of changes in available computing resources. Such changes can not be fully handled by static optimizations. We derive a theoretical performance model to identify tasks in need of more computing resources. We propose two on-line algorithms that use indications from the performance model to detect computation bottlenecks. In these algorithms, a task can identify itself as a bottleneck using only its local data. The proposed technique is transparent to end programmers and portable to systems with fair scheduling. Our on-line detection algorithms can be applied to other dynamic scenarios, for example, involving run-time variation of workload. Our experiments using the StreamIt benchmarks [5] show that the proposed run-time task duplication achieves considerable speedups over the multi-threaded baseline on a 16-core machine and on the scenarios with dynamically changing number of processing cores. We also show that our algorithms achieve better application throughput than alternative approaches for task duplication.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信