{"title":"管道完整性可靠性目标的更新","authors":"Alex Nemeth, S. Hassanien, Len Leblanc","doi":"10.1115/IPC2018-78378","DOIUrl":null,"url":null,"abstract":"The use of integrity reliability science is becoming a prevalent element in the pipeline integrity management process. One of the key elements in this process is defining what integrity reliability targets to achieve in order to maintain the safety of the system. IPC2016-64425 presented different industry approaches around the area of defining reliability target levels for pipelines. It discussed the importance of setting operators’ specific integrity target reliability levels, how to choose such targets, and how to determine the safety of a pipeline asset by comparing the probability of failure (PoF) against an integrity permissible probability of failure (PoFp) while keeping an eye on the estimated expected number of failures. Building upon the previous discussion, this paper reviews a risk-based approach for estimating integrity reliability targets that account for the consequence of a potential release. Given available technical publications, the as low as reasonably practicable (ALARP) concept, and operators’ specific risk tolerances, there is room for improving the communication of integrity reliability along with selected targets. The paper describes how codes, standards, and operators set reliability targets, how operator specific targets can be chosen, and how industry currently recommends liquid pipelines reliability targets. Moreover, the paper proposes different approaches to define practical reliability targets coupled with an integrity risk-informed decision making framework.","PeriodicalId":164582,"journal":{"name":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Updates on Pipeline Integrity Reliability Targets\",\"authors\":\"Alex Nemeth, S. Hassanien, Len Leblanc\",\"doi\":\"10.1115/IPC2018-78378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of integrity reliability science is becoming a prevalent element in the pipeline integrity management process. One of the key elements in this process is defining what integrity reliability targets to achieve in order to maintain the safety of the system. IPC2016-64425 presented different industry approaches around the area of defining reliability target levels for pipelines. It discussed the importance of setting operators’ specific integrity target reliability levels, how to choose such targets, and how to determine the safety of a pipeline asset by comparing the probability of failure (PoF) against an integrity permissible probability of failure (PoFp) while keeping an eye on the estimated expected number of failures. Building upon the previous discussion, this paper reviews a risk-based approach for estimating integrity reliability targets that account for the consequence of a potential release. Given available technical publications, the as low as reasonably practicable (ALARP) concept, and operators’ specific risk tolerances, there is room for improving the communication of integrity reliability along with selected targets. The paper describes how codes, standards, and operators set reliability targets, how operator specific targets can be chosen, and how industry currently recommends liquid pipelines reliability targets. Moreover, the paper proposes different approaches to define practical reliability targets coupled with an integrity risk-informed decision making framework.\",\"PeriodicalId\":164582,\"journal\":{\"name\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/IPC2018-78378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Pipeline Safety Management Systems; Project Management, Design, Construction, and Environmental Issues; Strain Based Design; Risk and Reliability; Northern Offshore and Production Pipelines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IPC2018-78378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The use of integrity reliability science is becoming a prevalent element in the pipeline integrity management process. One of the key elements in this process is defining what integrity reliability targets to achieve in order to maintain the safety of the system. IPC2016-64425 presented different industry approaches around the area of defining reliability target levels for pipelines. It discussed the importance of setting operators’ specific integrity target reliability levels, how to choose such targets, and how to determine the safety of a pipeline asset by comparing the probability of failure (PoF) against an integrity permissible probability of failure (PoFp) while keeping an eye on the estimated expected number of failures. Building upon the previous discussion, this paper reviews a risk-based approach for estimating integrity reliability targets that account for the consequence of a potential release. Given available technical publications, the as low as reasonably practicable (ALARP) concept, and operators’ specific risk tolerances, there is room for improving the communication of integrity reliability along with selected targets. The paper describes how codes, standards, and operators set reliability targets, how operator specific targets can be chosen, and how industry currently recommends liquid pipelines reliability targets. Moreover, the paper proposes different approaches to define practical reliability targets coupled with an integrity risk-informed decision making framework.