基于高斯过程的线性变参数系统模型预测控制

Ahmed Elkamel, A. Morsi, M. Darwish, H. S. Abbas, Mohamed H. Amin
{"title":"基于高斯过程的线性变参数系统模型预测控制","authors":"Ahmed Elkamel, A. Morsi, M. Darwish, H. S. Abbas, Mohamed H. Amin","doi":"10.1109/ICSTCC55426.2022.9931885","DOIUrl":null,"url":null,"abstract":"Linear parameter-varying (LPV) modeling is a powerful framework for representing time-varying systems as well as nonlinear dynamics in terms of a linear structure dependent on a time-varying parameter known as the scheduling parameter. Combining model predictive control (MPC) with LPV predictors (LPVMPC) results in an efficient parameter-dependent MPC approach. However, the future trajectory of the scheduling parameter required for formulating the LPVMPC optimization problem is not known in advance. In this paper, a Bayesian nonparametric approach within Gaussian process (GP) regression framework is introduced to predict the future behavior of the scheduling parameter over the MPC prediction horizon, which can be exploited by the proposed LPVMPC approach. The performance of the presented approach, i.e., GP-LPVMPC, is tested on a simulation example, where it is demonstrated that it outperforms the LPVMPC when the scheduling variable is frozen over the MPC prediction horizon in terms of convergence and control performance.","PeriodicalId":220845,"journal":{"name":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Model Predictive Control of Linear Parameter-Varying Systems Using Gaussian Processes\",\"authors\":\"Ahmed Elkamel, A. Morsi, M. Darwish, H. S. Abbas, Mohamed H. Amin\",\"doi\":\"10.1109/ICSTCC55426.2022.9931885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear parameter-varying (LPV) modeling is a powerful framework for representing time-varying systems as well as nonlinear dynamics in terms of a linear structure dependent on a time-varying parameter known as the scheduling parameter. Combining model predictive control (MPC) with LPV predictors (LPVMPC) results in an efficient parameter-dependent MPC approach. However, the future trajectory of the scheduling parameter required for formulating the LPVMPC optimization problem is not known in advance. In this paper, a Bayesian nonparametric approach within Gaussian process (GP) regression framework is introduced to predict the future behavior of the scheduling parameter over the MPC prediction horizon, which can be exploited by the proposed LPVMPC approach. The performance of the presented approach, i.e., GP-LPVMPC, is tested on a simulation example, where it is demonstrated that it outperforms the LPVMPC when the scheduling variable is frozen over the MPC prediction horizon in terms of convergence and control performance.\",\"PeriodicalId\":220845,\"journal\":{\"name\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSTCC55426.2022.9931885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference on System Theory, Control and Computing (ICSTCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSTCC55426.2022.9931885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

线性参数变化(LPV)建模是一个强大的框架,用于表示时变系统以及依赖于时变参数(称为调度参数)的线性结构的非线性动力学。将模型预测控制(MPC)与LPV预测器(LPVMPC)相结合,得到了一种有效的参数依赖的MPC方法。然而,制定LPVMPC优化问题所需的调度参数的未来轨迹是未知的。本文在高斯过程(GP)回归框架中引入了一种贝叶斯非参数方法来预测调度参数在MPC预测范围内的未来行为,该方法可以被LPVMPC方法所利用。通过仿真实例验证了该方法的性能,结果表明,当调度变量冻结在MPC预测范围内时,该方法在收敛性和控制性能方面优于LPVMPC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Predictive Control of Linear Parameter-Varying Systems Using Gaussian Processes
Linear parameter-varying (LPV) modeling is a powerful framework for representing time-varying systems as well as nonlinear dynamics in terms of a linear structure dependent on a time-varying parameter known as the scheduling parameter. Combining model predictive control (MPC) with LPV predictors (LPVMPC) results in an efficient parameter-dependent MPC approach. However, the future trajectory of the scheduling parameter required for formulating the LPVMPC optimization problem is not known in advance. In this paper, a Bayesian nonparametric approach within Gaussian process (GP) regression framework is introduced to predict the future behavior of the scheduling parameter over the MPC prediction horizon, which can be exploited by the proposed LPVMPC approach. The performance of the presented approach, i.e., GP-LPVMPC, is tested on a simulation example, where it is demonstrated that it outperforms the LPVMPC when the scheduling variable is frozen over the MPC prediction horizon in terms of convergence and control performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信