基于跟踪的多集群处理器协同分配策略模拟

A. Bucur, D. Epema
{"title":"基于跟踪的多集群处理器协同分配策略模拟","authors":"A. Bucur, D. Epema","doi":"10.1109/HPDC.2003.1210017","DOIUrl":null,"url":null,"abstract":"In systems consisting of multiple clusters of processors which employ space sharing for scheduling jobs, such as our Distributed ASCI (Advanced School for Computing Imaging) Supercomputer (DAS), co-allocation, i.e., the simultaneous allocation of processors to single jobs in multiple clusters, may be required. In this paper we study the performance of several scheduling policies for co-allocating unordered requests in multiclusters with a workload derived from the DAS. We find that beside the policy, limiting the total job size significantly improves the performance, and that for a slowdown of jobs due to global communication bounded by 1.25, co-allocation is a viable choice.","PeriodicalId":430378,"journal":{"name":"High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Trace-based simulations of processor co-allocation policies in multiclusters\",\"authors\":\"A. Bucur, D. Epema\",\"doi\":\"10.1109/HPDC.2003.1210017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In systems consisting of multiple clusters of processors which employ space sharing for scheduling jobs, such as our Distributed ASCI (Advanced School for Computing Imaging) Supercomputer (DAS), co-allocation, i.e., the simultaneous allocation of processors to single jobs in multiple clusters, may be required. In this paper we study the performance of several scheduling policies for co-allocating unordered requests in multiclusters with a workload derived from the DAS. We find that beside the policy, limiting the total job size significantly improves the performance, and that for a slowdown of jobs due to global communication bounded by 1.25, co-allocation is a viable choice.\",\"PeriodicalId\":430378,\"journal\":{\"name\":\"High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPDC.2003.1210017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Performance Distributed Computing, 2003. Proceedings. 12th IEEE International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPDC.2003.1210017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

在由多个处理器集群组成的系统中,使用空间共享来调度作业,例如我们的分布式ASCI(高级计算成像学院)超级计算机(DAS),可能需要共同分配,即同时将处理器分配给多个集群中的单个作业。在本文中,我们研究了几种调度策略在多集群中协同分配无序请求时的性能。我们发现,除了该策略外,限制总作业大小显著提高了性能,并且由于全局通信限制在1.25以内,作业速度减慢,共同分配是一个可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trace-based simulations of processor co-allocation policies in multiclusters
In systems consisting of multiple clusters of processors which employ space sharing for scheduling jobs, such as our Distributed ASCI (Advanced School for Computing Imaging) Supercomputer (DAS), co-allocation, i.e., the simultaneous allocation of processors to single jobs in multiple clusters, may be required. In this paper we study the performance of several scheduling policies for co-allocating unordered requests in multiclusters with a workload derived from the DAS. We find that beside the policy, limiting the total job size significantly improves the performance, and that for a slowdown of jobs due to global communication bounded by 1.25, co-allocation is a viable choice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信