{"title":"核黄素光化学性质在水凝胶合成中的应用","authors":"G. Ioniţă, I. Matei","doi":"10.5772/intechopen.88855","DOIUrl":null,"url":null,"abstract":"Riboflavin, known as vitamin B2, belongs to the class of water-soluble vitamins with redox, fluorescence, and photosensitizing properties. Riboflavin contains a fragment of 7,8-dimethyl-10-(1 ′ -D-ribityl) isoalloxazine with a system of conjugated double bonds that is are responsible for its photochemical properties. In the presence of light and oxygen, riboflavin generates reactive oxygen species that can be further involved in the oxidation of biological molecules such as amino acids, proteins, nucleotides, and lipids. The chapter focuses on the photochemical application of riboflavin in (1) cross-linking of structural proteins such as collagen and (2) synthesis of hydrogels. The involvement of riboflavin in such processes has already found application in medicine, especially in the treatment of ophthalmic diseases and in tissue engineering.","PeriodicalId":273044,"journal":{"name":"Biophysical Chemistry - Advance Applications","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Application of Riboflavin Photochemical Properties in Hydrogel Synthesis\",\"authors\":\"G. Ioniţă, I. Matei\",\"doi\":\"10.5772/intechopen.88855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Riboflavin, known as vitamin B2, belongs to the class of water-soluble vitamins with redox, fluorescence, and photosensitizing properties. Riboflavin contains a fragment of 7,8-dimethyl-10-(1 ′ -D-ribityl) isoalloxazine with a system of conjugated double bonds that is are responsible for its photochemical properties. In the presence of light and oxygen, riboflavin generates reactive oxygen species that can be further involved in the oxidation of biological molecules such as amino acids, proteins, nucleotides, and lipids. The chapter focuses on the photochemical application of riboflavin in (1) cross-linking of structural proteins such as collagen and (2) synthesis of hydrogels. The involvement of riboflavin in such processes has already found application in medicine, especially in the treatment of ophthalmic diseases and in tissue engineering.\",\"PeriodicalId\":273044,\"journal\":{\"name\":\"Biophysical Chemistry - Advance Applications\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical Chemistry - Advance Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.88855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical Chemistry - Advance Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.88855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Riboflavin Photochemical Properties in Hydrogel Synthesis
Riboflavin, known as vitamin B2, belongs to the class of water-soluble vitamins with redox, fluorescence, and photosensitizing properties. Riboflavin contains a fragment of 7,8-dimethyl-10-(1 ′ -D-ribityl) isoalloxazine with a system of conjugated double bonds that is are responsible for its photochemical properties. In the presence of light and oxygen, riboflavin generates reactive oxygen species that can be further involved in the oxidation of biological molecules such as amino acids, proteins, nucleotides, and lipids. The chapter focuses on the photochemical application of riboflavin in (1) cross-linking of structural proteins such as collagen and (2) synthesis of hydrogels. The involvement of riboflavin in such processes has already found application in medicine, especially in the treatment of ophthalmic diseases and in tissue engineering.