数据分析支持运营配电网监控

Eleni Tsioumpri, B. Stephen, Neil Dunn-Birch, S. Mcarthur
{"title":"数据分析支持运营配电网监控","authors":"Eleni Tsioumpri, B. Stephen, Neil Dunn-Birch, S. Mcarthur","doi":"10.1109/ISGTEurope.2018.8571550","DOIUrl":null,"url":null,"abstract":"The operation of distribution networks has become more challenging in recent years with increasing levels of embedded generation and other low carbon technologies pushing these towards their design limits. To identify the nature and extent of these challenges, network operators are deploying monitoring equipment on low voltage feeders, leading to new insights into fault behaviour and usage characterisation. With this heightened level of observability comes the additional challenge of finding models that translate raw data streams into outputs on which operational decisions can be based or supported. In this paper, operational low voltage substation and feeder monitoring data from a UK distribution network is used to identify fault occurrence relations to localised meteorological data, characterise the localised network sensitivities of demand dynamics and infer the effects of embedded generation not visible to the network operator. These case studies are then used to show how additional operational context can be provided to the network operator through the application of analytics.","PeriodicalId":302863,"journal":{"name":"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data Analytics to Support Operational Distribution Network Monitoring\",\"authors\":\"Eleni Tsioumpri, B. Stephen, Neil Dunn-Birch, S. Mcarthur\",\"doi\":\"10.1109/ISGTEurope.2018.8571550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operation of distribution networks has become more challenging in recent years with increasing levels of embedded generation and other low carbon technologies pushing these towards their design limits. To identify the nature and extent of these challenges, network operators are deploying monitoring equipment on low voltage feeders, leading to new insights into fault behaviour and usage characterisation. With this heightened level of observability comes the additional challenge of finding models that translate raw data streams into outputs on which operational decisions can be based or supported. In this paper, operational low voltage substation and feeder monitoring data from a UK distribution network is used to identify fault occurrence relations to localised meteorological data, characterise the localised network sensitivities of demand dynamics and infer the effects of embedded generation not visible to the network operator. These case studies are then used to show how additional operational context can be provided to the network operator through the application of analytics.\",\"PeriodicalId\":302863,\"journal\":{\"name\":\"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2018.8571550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2018.8571550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,随着嵌入式发电和其他低碳技术水平的提高,配电网的运营变得更具挑战性,这些技术将配电网推向其设计极限。为了确定这些挑战的性质和程度,网络运营商正在低压馈线上部署监控设备,从而对故障行为和使用特征有了新的认识。随着可观察性水平的提高,寻找将原始数据流转化为可基于或支持运营决策的输出的模型也带来了额外的挑战。在本文中,使用来自英国配电网的运行低压变电站和馈线监测数据来识别故障发生与局部气象数据的关系,表征需求动态的局部网络敏感性,并推断网络运营商不可见的嵌入式发电的影响。然后使用这些案例研究来展示如何通过分析的应用为网络运营商提供额外的操作环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Analytics to Support Operational Distribution Network Monitoring
The operation of distribution networks has become more challenging in recent years with increasing levels of embedded generation and other low carbon technologies pushing these towards their design limits. To identify the nature and extent of these challenges, network operators are deploying monitoring equipment on low voltage feeders, leading to new insights into fault behaviour and usage characterisation. With this heightened level of observability comes the additional challenge of finding models that translate raw data streams into outputs on which operational decisions can be based or supported. In this paper, operational low voltage substation and feeder monitoring data from a UK distribution network is used to identify fault occurrence relations to localised meteorological data, characterise the localised network sensitivities of demand dynamics and infer the effects of embedded generation not visible to the network operator. These case studies are then used to show how additional operational context can be provided to the network operator through the application of analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信