铁磁性GdFeCo合金的相变学习

N. A. Koritsky, A. K. Fedorov, S. Solov’yov, A. K. Zvezdin
{"title":"铁磁性GdFeCo合金的相变学习","authors":"N. A. Koritsky, A. K. Fedorov, S. Solov’yov, A. K. Zvezdin","doi":"10.1109/S.A.I.ence50533.2020.9303219","DOIUrl":null,"url":null,"abstract":"We present results on the identification of phase transitions in the ferrimagnetic GdFeCo alloy using machine learning. The approach for finding phase transitions in the system is based on the ‘learning by confusion’ scheme, which allows one to characterize phase transitions using universal W -shape. By applying the ‘learning by confusion’ scheme, we obtain 2D W -shaped surface that characterizes a triple phase transition point of the GdFeCo alloy. We demonstrate that our results are in the perfect agreement with the procedure of the numerical minimization of the thermodynamical potential, yet our machine-learning-based scheme has a potential to provide a speedup in the task of the phase transition identification.","PeriodicalId":201402,"journal":{"name":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning phase transitions in the ferrimagnetic GdFeCo alloy\",\"authors\":\"N. A. Koritsky, A. K. Fedorov, S. Solov’yov, A. K. Zvezdin\",\"doi\":\"10.1109/S.A.I.ence50533.2020.9303219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present results on the identification of phase transitions in the ferrimagnetic GdFeCo alloy using machine learning. The approach for finding phase transitions in the system is based on the ‘learning by confusion’ scheme, which allows one to characterize phase transitions using universal W -shape. By applying the ‘learning by confusion’ scheme, we obtain 2D W -shaped surface that characterizes a triple phase transition point of the GdFeCo alloy. We demonstrate that our results are in the perfect agreement with the procedure of the numerical minimization of the thermodynamical potential, yet our machine-learning-based scheme has a potential to provide a speedup in the task of the phase transition identification.\",\"PeriodicalId\":201402,\"journal\":{\"name\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Science and Artificial Intelligence conference (S.A.I.ence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/S.A.I.ence50533.2020.9303219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Science and Artificial Intelligence conference (S.A.I.ence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/S.A.I.ence50533.2020.9303219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了用机器学习识别铁磁GdFeCo合金相变的结果。在系统中寻找相变的方法基于“混淆学习”方案,该方案允许人们使用通用W形来表征相变。通过应用“混淆学习”方案,我们获得了表征GdFeCo合金三相转变点的二维W形表面。我们证明了我们的结果与热力学势的数值最小化的过程是完全一致的,但是我们基于机器学习的方案有可能在相变识别任务中提供加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning phase transitions in the ferrimagnetic GdFeCo alloy
We present results on the identification of phase transitions in the ferrimagnetic GdFeCo alloy using machine learning. The approach for finding phase transitions in the system is based on the ‘learning by confusion’ scheme, which allows one to characterize phase transitions using universal W -shape. By applying the ‘learning by confusion’ scheme, we obtain 2D W -shaped surface that characterizes a triple phase transition point of the GdFeCo alloy. We demonstrate that our results are in the perfect agreement with the procedure of the numerical minimization of the thermodynamical potential, yet our machine-learning-based scheme has a potential to provide a speedup in the task of the phase transition identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信