呼叫中心会话中的自动欺诈检测

Berk Özlan, Ali Haznedaroglu, L. Arslan
{"title":"呼叫中心会话中的自动欺诈检测","authors":"Berk Özlan, Ali Haznedaroglu, L. Arslan","doi":"10.1109/SIU.2019.8806262","DOIUrl":null,"url":null,"abstract":"In this paper, a machine learning system that automatically detects fraudulent call center conversations is presented. The system first transcribes the call center telephone conversations into text using a speech recognition engine and then it automatically detects the fraudulent conversations by a text-categorization algorithm using the transcribed texts. Several classifiers that use different document vectorizers are trained, tested and their performances are compared. The best results are obtained by using deep convolutional neural networks that use word embedding vectors as their inputs. With these networks, 43% of fraudulent calls can be automatically detected with 62% precision.","PeriodicalId":326275,"journal":{"name":"2019 27th Signal Processing and Communications Applications Conference (SIU)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Automatic Fraud Detection In Call Center Conversations\",\"authors\":\"Berk Özlan, Ali Haznedaroglu, L. Arslan\",\"doi\":\"10.1109/SIU.2019.8806262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a machine learning system that automatically detects fraudulent call center conversations is presented. The system first transcribes the call center telephone conversations into text using a speech recognition engine and then it automatically detects the fraudulent conversations by a text-categorization algorithm using the transcribed texts. Several classifiers that use different document vectorizers are trained, tested and their performances are compared. The best results are obtained by using deep convolutional neural networks that use word embedding vectors as their inputs. With these networks, 43% of fraudulent calls can be automatically detected with 62% precision.\",\"PeriodicalId\":326275,\"journal\":{\"name\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 27th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2019.8806262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 27th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2019.8806262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,提出了一个自动检测欺诈性呼叫中心对话的机器学习系统。该系统首先使用语音识别引擎将呼叫中心的电话对话转录为文本,然后利用转录文本通过文本分类算法自动检测欺诈对话。对使用不同文档矢量器的分类器进行了训练、测试,并对其性能进行了比较。使用词嵌入向量作为输入的深度卷积神经网络得到了最好的结果。有了这些网络,43%的欺诈电话可以被自动检测出来,准确率为62%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Fraud Detection In Call Center Conversations
In this paper, a machine learning system that automatically detects fraudulent call center conversations is presented. The system first transcribes the call center telephone conversations into text using a speech recognition engine and then it automatically detects the fraudulent conversations by a text-categorization algorithm using the transcribed texts. Several classifiers that use different document vectorizers are trained, tested and their performances are compared. The best results are obtained by using deep convolutional neural networks that use word embedding vectors as their inputs. With these networks, 43% of fraudulent calls can be automatically detected with 62% precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信