基于信道状态信息的室内WiFi定位NLOS识别与缓解

Xiong Cai, Xiaohui Li, Ruiyang Yuan, Y. Hei
{"title":"基于信道状态信息的室内WiFi定位NLOS识别与缓解","authors":"Xiong Cai, Xiaohui Li, Ruiyang Yuan, Y. Hei","doi":"10.1109/WCSP.2015.7341172","DOIUrl":null,"url":null,"abstract":"Indoor localization could benefit greatly from non-line-of-sight (NLOS) identification and mitigation, since the major challenge for WiFi indoor ranging-based localization technologies are multipath and NLOS. NLOS identification and mitigation on commodity WiFi devices, however, is challenge due to limited bandwidth and coarse multipath resolution with mere MAC layer RSSI. In this study, we explore and exploit the finer-grained PHY layer channel state information (CSI) to identify and mitigate NLOS. Key to our approach is exploiting several statistical features of CSI, which are proved to be particularly effective. Approach based on machine learning is proposed to identify NLOS and mitigate NLOS error. Experiment results in various indoor scenarios with severe interferences demonstrate that the proposed approach outperform previous threshold-based approaches and mitigate the impact of NLOS conditions perfectly.","PeriodicalId":164776,"journal":{"name":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Identification and mitigation of NLOS based on channel state information for indoor WiFi localization\",\"authors\":\"Xiong Cai, Xiaohui Li, Ruiyang Yuan, Y. Hei\",\"doi\":\"10.1109/WCSP.2015.7341172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Indoor localization could benefit greatly from non-line-of-sight (NLOS) identification and mitigation, since the major challenge for WiFi indoor ranging-based localization technologies are multipath and NLOS. NLOS identification and mitigation on commodity WiFi devices, however, is challenge due to limited bandwidth and coarse multipath resolution with mere MAC layer RSSI. In this study, we explore and exploit the finer-grained PHY layer channel state information (CSI) to identify and mitigate NLOS. Key to our approach is exploiting several statistical features of CSI, which are proved to be particularly effective. Approach based on machine learning is proposed to identify NLOS and mitigate NLOS error. Experiment results in various indoor scenarios with severe interferences demonstrate that the proposed approach outperform previous threshold-based approaches and mitigate the impact of NLOS conditions perfectly.\",\"PeriodicalId\":164776,\"journal\":{\"name\":\"2015 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"volume\":\"227 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Wireless Communications & Signal Processing (WCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSP.2015.7341172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Wireless Communications & Signal Processing (WCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSP.2015.7341172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

室内定位可以从非视距(NLOS)识别和缓解中受益匪浅,因为基于WiFi的室内测距定位技术面临的主要挑战是多路径和NLOS。然而,商用WiFi设备上的NLOS识别和缓解是一个挑战,因为带宽有限,多径分辨率粗糙,仅使用MAC层RSSI。在本研究中,我们探索和利用细粒度物理层信道状态信息(CSI)来识别和减轻NLOS。我们方法的关键是利用CSI的几个统计特征,这些特征被证明是特别有效的。提出了一种基于机器学习的方法来识别NLOS并减小NLOS误差。在各种室内严重干扰情况下的实验结果表明,该方法优于以往基于阈值的方法,可以很好地减轻NLOS条件的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification and mitigation of NLOS based on channel state information for indoor WiFi localization
Indoor localization could benefit greatly from non-line-of-sight (NLOS) identification and mitigation, since the major challenge for WiFi indoor ranging-based localization technologies are multipath and NLOS. NLOS identification and mitigation on commodity WiFi devices, however, is challenge due to limited bandwidth and coarse multipath resolution with mere MAC layer RSSI. In this study, we explore and exploit the finer-grained PHY layer channel state information (CSI) to identify and mitigate NLOS. Key to our approach is exploiting several statistical features of CSI, which are proved to be particularly effective. Approach based on machine learning is proposed to identify NLOS and mitigate NLOS error. Experiment results in various indoor scenarios with severe interferences demonstrate that the proposed approach outperform previous threshold-based approaches and mitigate the impact of NLOS conditions perfectly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信