{"title":"EtherCAT通信时钟漂移的分数阶控制与校正策略","authors":"Jihao Sun, Pengchong Chen, Ying Luo","doi":"10.1115/detc2021-70814","DOIUrl":null,"url":null,"abstract":"\n Ethernet Control Automation Technology (EtherCAT) applies distributed clock (DC) to realize synchronization among different slaves. Due to the influence of the crystal oscillator manufacturing process and environment, there is still synchronization error between reference clock and non-reference clock. To solve the clock synchronization problem, this paper proposes a clock drift compensation algorithm based on the idea of closed-loop control. By designing integer-order proportional integral (IOPI) and fractional-order proportional integral (FOPI) controllers, the synchronization error between slaves can be minimized. The IOPI and FOPI controllers designed in this paper are used to eliminate the drift error. This method improves the synchronization accuracy without bringing too much computational load. The results show that the proposed FOPI controller can effectively reduce the synchronization error with even better performance over the IOPI controller.","PeriodicalId":221388,"journal":{"name":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fractional Order Control and Correction Strategy for EtherCAT Communication Clock Drift\",\"authors\":\"Jihao Sun, Pengchong Chen, Ying Luo\",\"doi\":\"10.1115/detc2021-70814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Ethernet Control Automation Technology (EtherCAT) applies distributed clock (DC) to realize synchronization among different slaves. Due to the influence of the crystal oscillator manufacturing process and environment, there is still synchronization error between reference clock and non-reference clock. To solve the clock synchronization problem, this paper proposes a clock drift compensation algorithm based on the idea of closed-loop control. By designing integer-order proportional integral (IOPI) and fractional-order proportional integral (FOPI) controllers, the synchronization error between slaves can be minimized. The IOPI and FOPI controllers designed in this paper are used to eliminate the drift error. This method improves the synchronization accuracy without bringing too much computational load. The results show that the proposed FOPI controller can effectively reduce the synchronization error with even better performance over the IOPI controller.\",\"PeriodicalId\":221388,\"journal\":{\"name\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-70814\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7: 17th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-70814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Fractional Order Control and Correction Strategy for EtherCAT Communication Clock Drift
Ethernet Control Automation Technology (EtherCAT) applies distributed clock (DC) to realize synchronization among different slaves. Due to the influence of the crystal oscillator manufacturing process and environment, there is still synchronization error between reference clock and non-reference clock. To solve the clock synchronization problem, this paper proposes a clock drift compensation algorithm based on the idea of closed-loop control. By designing integer-order proportional integral (IOPI) and fractional-order proportional integral (FOPI) controllers, the synchronization error between slaves can be minimized. The IOPI and FOPI controllers designed in this paper are used to eliminate the drift error. This method improves the synchronization accuracy without bringing too much computational load. The results show that the proposed FOPI controller can effectively reduce the synchronization error with even better performance over the IOPI controller.