片上互连部分互感的精确封闭形式公式

Guoan Zhong, Cheng-Kok Koh
{"title":"片上互连部分互感的精确封闭形式公式","authors":"Guoan Zhong, Cheng-Kok Koh","doi":"10.1109/ICCD.2002.1106807","DOIUrl":null,"url":null,"abstract":"In this paper we propose a new exact closed form mutual inductance equation for on-chip interconnects. We express the mutual inductance between two parallel rectangular conductors as a weighted sum of self-inductances. We do not place any restrictions on the alignment of the two parallel rectangular conductors. Moreover they could be co-planar or reside on different layers. Most important, experimental results show that our formula is numerically more stable than that derived by Hoer and Love (1965) for long parallel onchip interconnects.","PeriodicalId":164768,"journal":{"name":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Exact closed form formula for partial mutual inductances of on-chip interconnects\",\"authors\":\"Guoan Zhong, Cheng-Kok Koh\",\"doi\":\"10.1109/ICCD.2002.1106807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a new exact closed form mutual inductance equation for on-chip interconnects. We express the mutual inductance between two parallel rectangular conductors as a weighted sum of self-inductances. We do not place any restrictions on the alignment of the two parallel rectangular conductors. Moreover they could be co-planar or reside on different layers. Most important, experimental results show that our formula is numerically more stable than that derived by Hoer and Love (1965) for long parallel onchip interconnects.\",\"PeriodicalId\":164768,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2002.1106807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2002.1106807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

本文提出了一种新的片上互连的精确封闭互感方程。我们将两个平行矩形导体之间的互感表示为自感的加权和。我们对两个平行的矩形导体的对中不作任何限制。此外,它们可以共面或驻留在不同的层上。最重要的是,实验结果表明,对于长并行片上互连,我们的公式在数值上比Hoer和Love(1965)推导的公式更稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact closed form formula for partial mutual inductances of on-chip interconnects
In this paper we propose a new exact closed form mutual inductance equation for on-chip interconnects. We express the mutual inductance between two parallel rectangular conductors as a weighted sum of self-inductances. We do not place any restrictions on the alignment of the two parallel rectangular conductors. Moreover they could be co-planar or reside on different layers. Most important, experimental results show that our formula is numerically more stable than that derived by Hoer and Love (1965) for long parallel onchip interconnects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信