{"title":"印尼语口语方言的分类与聚类","authors":"Jacqueline Ibrahim, D. Lestari","doi":"10.1109/ICODSE.2017.8285852","DOIUrl":null,"url":null,"abstract":"This paper explains classification using Support Vector Machines (SVM) technique and clustering using K-means technique in identifying eight spoken dialects in Indonesian language. Dialect identification is important to build a better Automatic Speech Recognition system. The experiment in this research is divided into using three features of sound; Mel Frequency Cepstral Coefficient (MFCC), spectral flux, and spectral centroid, and compares it to model with MFCC features only. For methods, it uses one-against-one and all-at-once as comparison. The best result is from using SVM one-against-one with three features which gives 55%.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Classification and clustering to identify spoken dialects in Indonesian\",\"authors\":\"Jacqueline Ibrahim, D. Lestari\",\"doi\":\"10.1109/ICODSE.2017.8285852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explains classification using Support Vector Machines (SVM) technique and clustering using K-means technique in identifying eight spoken dialects in Indonesian language. Dialect identification is important to build a better Automatic Speech Recognition system. The experiment in this research is divided into using three features of sound; Mel Frequency Cepstral Coefficient (MFCC), spectral flux, and spectral centroid, and compares it to model with MFCC features only. For methods, it uses one-against-one and all-at-once as comparison. The best result is from using SVM one-against-one with three features which gives 55%.\",\"PeriodicalId\":366005,\"journal\":{\"name\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2017.8285852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification and clustering to identify spoken dialects in Indonesian
This paper explains classification using Support Vector Machines (SVM) technique and clustering using K-means technique in identifying eight spoken dialects in Indonesian language. Dialect identification is important to build a better Automatic Speech Recognition system. The experiment in this research is divided into using three features of sound; Mel Frequency Cepstral Coefficient (MFCC), spectral flux, and spectral centroid, and compares it to model with MFCC features only. For methods, it uses one-against-one and all-at-once as comparison. The best result is from using SVM one-against-one with three features which gives 55%.