{"title":"基于蚁群优化算法的并行共享内存策略","authors":"T. N. Bui, ThanhVu Nguyen, Joseph R. Rizzo","doi":"10.1145/1569901.1569903","DOIUrl":null,"url":null,"abstract":"This paper describes a general scheme to convert sequential ant-based algorithms into parallel shared memory algorithms. The scheme is applied to an ant-based algorithm for the maximum clique problem. Extensive experimental results indicate that the parallel version provides noticeable improvements to the running time while maintaining comparable solution quality to that of the sequential version.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Parallel shared memory strategies for ant-based optimization algorithms\",\"authors\":\"T. N. Bui, ThanhVu Nguyen, Joseph R. Rizzo\",\"doi\":\"10.1145/1569901.1569903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a general scheme to convert sequential ant-based algorithms into parallel shared memory algorithms. The scheme is applied to an ant-based algorithm for the maximum clique problem. Extensive experimental results indicate that the parallel version provides noticeable improvements to the running time while maintaining comparable solution quality to that of the sequential version.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel shared memory strategies for ant-based optimization algorithms
This paper describes a general scheme to convert sequential ant-based algorithms into parallel shared memory algorithms. The scheme is applied to an ant-based algorithm for the maximum clique problem. Extensive experimental results indicate that the parallel version provides noticeable improvements to the running time while maintaining comparable solution quality to that of the sequential version.