基于分形残差网络的深度与宽度平衡的JPEG隐写分析方法

Rui Zhan, Yi Ma, Shanshan Yang, Yufei Man, Yu Yang
{"title":"基于分形残差网络的深度与宽度平衡的JPEG隐写分析方法","authors":"Rui Zhan, Yi Ma, Shanshan Yang, Yufei Man, Yu Yang","doi":"10.1109/PIC53636.2021.9687050","DOIUrl":null,"url":null,"abstract":"Digital image steganalysis technology based on deep learning has made rapid development. The latest technology, SFNet based on fractal technology, exceeds the cutting-edge technology SRNet in performance. The disadvantage is that SFNet is not suitable for JPEG steganalysis. Due to the interference of compression noise in JPEG images, it is difficult for SFNet to extract weak stego signal by self-similarity extended network. In this paper, a JPEG steganalysis method based on fractal residual network, called FRNet, is proposed. This paper introduces the residual unit with a shortcut connection into the fractal structure, which helps the network effectively suppress the image content and generate the residual image with stego noise. Then, referring to the bottleneck block of ResNet, the deep feature extraction module is constructed to downsample the feature map and superimpose the weak stego signal between different channels of the convolution layer. Finally, the fractal residual module and depth feature extraction module are used to control the width and depth of the network to maximize the detection performance. Two adaptive steganography algorithms of J-UNIWARD and UERD are chosen to evaluate the performance. Experimental results show that the detection error of FRNet is 11.52% lower than J-XuNet, 10.12% lower than WangNet, and 2.54% lower than SRNet.","PeriodicalId":297239,"journal":{"name":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Advanced JPEG Steganalysis Method with Balanced Depth and Width Based on Fractal Residual Network\",\"authors\":\"Rui Zhan, Yi Ma, Shanshan Yang, Yufei Man, Yu Yang\",\"doi\":\"10.1109/PIC53636.2021.9687050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital image steganalysis technology based on deep learning has made rapid development. The latest technology, SFNet based on fractal technology, exceeds the cutting-edge technology SRNet in performance. The disadvantage is that SFNet is not suitable for JPEG steganalysis. Due to the interference of compression noise in JPEG images, it is difficult for SFNet to extract weak stego signal by self-similarity extended network. In this paper, a JPEG steganalysis method based on fractal residual network, called FRNet, is proposed. This paper introduces the residual unit with a shortcut connection into the fractal structure, which helps the network effectively suppress the image content and generate the residual image with stego noise. Then, referring to the bottleneck block of ResNet, the deep feature extraction module is constructed to downsample the feature map and superimpose the weak stego signal between different channels of the convolution layer. Finally, the fractal residual module and depth feature extraction module are used to control the width and depth of the network to maximize the detection performance. Two adaptive steganography algorithms of J-UNIWARD and UERD are chosen to evaluate the performance. Experimental results show that the detection error of FRNet is 11.52% lower than J-XuNet, 10.12% lower than WangNet, and 2.54% lower than SRNet.\",\"PeriodicalId\":297239,\"journal\":{\"name\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC53636.2021.9687050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC53636.2021.9687050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于深度学习的数字图像隐写分析技术得到了迅速发展。最新技术SFNet基于分形技术,在性能上超过了尖端技术SRNet。缺点是SFNet不适合JPEG隐写分析。由于JPEG图像中存在压缩噪声的干扰,SFNet很难通过自相似扩展网络提取微弱的隐进信号。本文提出了一种基于分形残差网络的JPEG隐写分析方法——FRNet。本文在分形结构中引入具有快捷连接的残差单元,有助于网络有效地抑制图像内容,生成带有隐写噪声的残差图像。然后,参考ResNet的瓶颈块,构建深度特征提取模块,对特征映射进行下采样,并在卷积层的不同通道之间叠加弱隐进信号。最后,利用分形残差模块和深度特征提取模块控制网络的宽度和深度,使检测性能最大化。选取J-UNIWARD和UERD两种自适应隐写算法进行性能评价。实验结果表明,FRNet的检测误差比J-XuNet低11.52%,比WangNet低10.12%,比SRNet低2.54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Advanced JPEG Steganalysis Method with Balanced Depth and Width Based on Fractal Residual Network
Digital image steganalysis technology based on deep learning has made rapid development. The latest technology, SFNet based on fractal technology, exceeds the cutting-edge technology SRNet in performance. The disadvantage is that SFNet is not suitable for JPEG steganalysis. Due to the interference of compression noise in JPEG images, it is difficult for SFNet to extract weak stego signal by self-similarity extended network. In this paper, a JPEG steganalysis method based on fractal residual network, called FRNet, is proposed. This paper introduces the residual unit with a shortcut connection into the fractal structure, which helps the network effectively suppress the image content and generate the residual image with stego noise. Then, referring to the bottleneck block of ResNet, the deep feature extraction module is constructed to downsample the feature map and superimpose the weak stego signal between different channels of the convolution layer. Finally, the fractal residual module and depth feature extraction module are used to control the width and depth of the network to maximize the detection performance. Two adaptive steganography algorithms of J-UNIWARD and UERD are chosen to evaluate the performance. Experimental results show that the detection error of FRNet is 11.52% lower than J-XuNet, 10.12% lower than WangNet, and 2.54% lower than SRNet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信