{"title":"荧光寿命成像无损评价处理过的聚对苯二甲酸乙二醇酯薄膜","authors":"M. Wohlschläger, M. Versen, C. Laforsch","doi":"10.1109/SAS51076.2021.9530008","DOIUrl":null,"url":null,"abstract":"The fluorescence decay time allows to identify and distinguish polymers from each other. Three differently treated biaxially-oriented polyethylene terephthalate films are examined with two excitation wavelengths of 445 and 488nm. The fluorescence decay time is dependent of the treatment method of the films and is a means for identification.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-destructive evaluation of treated polyethylene terephthalate films by fluorescence lifetime imaging\",\"authors\":\"M. Wohlschläger, M. Versen, C. Laforsch\",\"doi\":\"10.1109/SAS51076.2021.9530008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fluorescence decay time allows to identify and distinguish polymers from each other. Three differently treated biaxially-oriented polyethylene terephthalate films are examined with two excitation wavelengths of 445 and 488nm. The fluorescence decay time is dependent of the treatment method of the films and is a means for identification.\",\"PeriodicalId\":224327,\"journal\":{\"name\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS51076.2021.9530008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non-destructive evaluation of treated polyethylene terephthalate films by fluorescence lifetime imaging
The fluorescence decay time allows to identify and distinguish polymers from each other. Three differently treated biaxially-oriented polyethylene terephthalate films are examined with two excitation wavelengths of 445 and 488nm. The fluorescence decay time is dependent of the treatment method of the films and is a means for identification.