部分浸入式两足动物的实时步态控制

Samuel Carensac, N. Pronost, S. Bouakaz
{"title":"部分浸入式两足动物的实时步态控制","authors":"Samuel Carensac, N. Pronost, S. Bouakaz","doi":"10.1145/2822013.2822016","DOIUrl":null,"url":null,"abstract":"Physics-based animation is an increasingly studied subject of computer animation because it allows natural interactions with the virtual environment. Though some existing motion controllers can handle the simulation of interactions between a character and a liquid, only few methods focus on the simulation of the locomotion of immersed bipeds. In this paper, we present a control strategy capable of simulating partially immersed gaits. The impact of the liquid on the character's motion is modeled through simple hydrodynamics. To produce natural looking animations, we design a controller allowing the combination of multiple gait styles, the conservation of balance through intelligent foot placement and precise control of the character's speed. We determine the optimal parameters for the controller by using an optimization process. This optimization is repeated for several scenarios where the character has to walk across a volume of liquid parametrized by its height. Our controller produces natural looking gaits while being capable of online adaptation to the variation of liquid height, to the modification of the liquid density and viscosity and to the variation of the required character's speed.","PeriodicalId":222258,"journal":{"name":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Real-time gait control for partially immersed bipeds\",\"authors\":\"Samuel Carensac, N. Pronost, S. Bouakaz\",\"doi\":\"10.1145/2822013.2822016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physics-based animation is an increasingly studied subject of computer animation because it allows natural interactions with the virtual environment. Though some existing motion controllers can handle the simulation of interactions between a character and a liquid, only few methods focus on the simulation of the locomotion of immersed bipeds. In this paper, we present a control strategy capable of simulating partially immersed gaits. The impact of the liquid on the character's motion is modeled through simple hydrodynamics. To produce natural looking animations, we design a controller allowing the combination of multiple gait styles, the conservation of balance through intelligent foot placement and precise control of the character's speed. We determine the optimal parameters for the controller by using an optimization process. This optimization is repeated for several scenarios where the character has to walk across a volume of liquid parametrized by its height. Our controller produces natural looking gaits while being capable of online adaptation to the variation of liquid height, to the modification of the liquid density and viscosity and to the variation of the required character's speed.\",\"PeriodicalId\":222258,\"journal\":{\"name\":\"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2822013.2822016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2822013.2822016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

基于物理的动画是计算机动画中越来越多的研究课题,因为它允许与虚拟环境的自然交互。虽然现有的一些运动控制器可以处理角色与液体之间相互作用的模拟,但很少有方法关注浸入式两足动物的运动模拟。本文提出了一种能够模拟部分浸入式步态的控制策略。液体对角色运动的影响是通过简单的流体力学建模的。为了制作自然的动画,我们设计了一个控制器,允许多种步态风格的组合,通过智能脚的位置和精确控制角色的速度来保持平衡。通过优化过程确定控制器的最优参数。这种优化在角色必须通过高度参数化的液体体积的几个场景中重复。我们的控制器产生自然的步态,同时能够在线适应液体高度的变化,液体密度和粘度的修改以及所需角色速度的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time gait control for partially immersed bipeds
Physics-based animation is an increasingly studied subject of computer animation because it allows natural interactions with the virtual environment. Though some existing motion controllers can handle the simulation of interactions between a character and a liquid, only few methods focus on the simulation of the locomotion of immersed bipeds. In this paper, we present a control strategy capable of simulating partially immersed gaits. The impact of the liquid on the character's motion is modeled through simple hydrodynamics. To produce natural looking animations, we design a controller allowing the combination of multiple gait styles, the conservation of balance through intelligent foot placement and precise control of the character's speed. We determine the optimal parameters for the controller by using an optimization process. This optimization is repeated for several scenarios where the character has to walk across a volume of liquid parametrized by its height. Our controller produces natural looking gaits while being capable of online adaptation to the variation of liquid height, to the modification of the liquid density and viscosity and to the variation of the required character's speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信