{"title":"使用亚当优化器的 LSTM 对餐厅顾客评论进行基于方面的情感分析","authors":"Wardianto Wardianto, Farikhin Farikhin, Dinar Mutiara Kusumo Nugraheni","doi":"10.31328/jointecs.v8i2.4737","DOIUrl":null,"url":null,"abstract":"Consumers believe that restaurant reviews are very important when choosing a restaurant. Due to the fact that reviews have become one of the most effective ways to influence customer decisions, research that has been done on restaurant customer reviews is about sentiment analysis. Previous studies have only used sentiment analysis at the sentence or document level, while a better level uses Aspect-Based Sentiment Analysis (ABSA), or a type of aspect-based sentiment analysis. LSTM is a variant of RNN that stores long-term information in memory cells. Use of global max pooling to reduce output resolution features and prevent overfitting. In addition, the optimization method used by Adam Optimizer is an adaptive learning rate optimization algorithm specifically designed to train deep neural networks. This study aims to classify restaurant customer opinions based on aspects (food, place, service, and price) based on restaurant customer reviews on Indonesian-language TripAdvisor with LSTM and global max pooling for sentiment classification (negative, half negative, neutral, half positive, positive). The results of this study indicate that the ABSA in restaurant customer reviews for sentiment classification accuracy is 78.7% and the aspect category accuracy is 78%, both are interconnected and can help understand restaurant customer opinions on TripAdvisor.","PeriodicalId":259537,"journal":{"name":"JOINTECS (Journal of Information Technology and Computer Science)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer\",\"authors\":\"Wardianto Wardianto, Farikhin Farikhin, Dinar Mutiara Kusumo Nugraheni\",\"doi\":\"10.31328/jointecs.v8i2.4737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consumers believe that restaurant reviews are very important when choosing a restaurant. Due to the fact that reviews have become one of the most effective ways to influence customer decisions, research that has been done on restaurant customer reviews is about sentiment analysis. Previous studies have only used sentiment analysis at the sentence or document level, while a better level uses Aspect-Based Sentiment Analysis (ABSA), or a type of aspect-based sentiment analysis. LSTM is a variant of RNN that stores long-term information in memory cells. Use of global max pooling to reduce output resolution features and prevent overfitting. In addition, the optimization method used by Adam Optimizer is an adaptive learning rate optimization algorithm specifically designed to train deep neural networks. This study aims to classify restaurant customer opinions based on aspects (food, place, service, and price) based on restaurant customer reviews on Indonesian-language TripAdvisor with LSTM and global max pooling for sentiment classification (negative, half negative, neutral, half positive, positive). The results of this study indicate that the ABSA in restaurant customer reviews for sentiment classification accuracy is 78.7% and the aspect category accuracy is 78%, both are interconnected and can help understand restaurant customer opinions on TripAdvisor.\",\"PeriodicalId\":259537,\"journal\":{\"name\":\"JOINTECS (Journal of Information Technology and Computer Science)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOINTECS (Journal of Information Technology and Computer Science)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31328/jointecs.v8i2.4737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOINTECS (Journal of Information Technology and Computer Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31328/jointecs.v8i2.4737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analisis Sentimen Berbasis Aspek Ulasan Pelanggan Restoran Menggunakan LSTM Dengan Adam Optimizer
Consumers believe that restaurant reviews are very important when choosing a restaurant. Due to the fact that reviews have become one of the most effective ways to influence customer decisions, research that has been done on restaurant customer reviews is about sentiment analysis. Previous studies have only used sentiment analysis at the sentence or document level, while a better level uses Aspect-Based Sentiment Analysis (ABSA), or a type of aspect-based sentiment analysis. LSTM is a variant of RNN that stores long-term information in memory cells. Use of global max pooling to reduce output resolution features and prevent overfitting. In addition, the optimization method used by Adam Optimizer is an adaptive learning rate optimization algorithm specifically designed to train deep neural networks. This study aims to classify restaurant customer opinions based on aspects (food, place, service, and price) based on restaurant customer reviews on Indonesian-language TripAdvisor with LSTM and global max pooling for sentiment classification (negative, half negative, neutral, half positive, positive). The results of this study indicate that the ABSA in restaurant customer reviews for sentiment classification accuracy is 78.7% and the aspect category accuracy is 78%, both are interconnected and can help understand restaurant customer opinions on TripAdvisor.