基于局部和非局部时间特征的快速动作识别

Zhiang Dong
{"title":"基于局部和非局部时间特征的快速动作识别","authors":"Zhiang Dong","doi":"10.1109/ICISCAE52414.2021.9590691","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a mixed time-asymmetric (MTA) CNN which uses time-asymmetric convolution to extract non-local temporal feature and uses normal convolution to extract local temporal features. With the fusion of local and non-local temporal feature, our MTA CNN can achieve better action recognition accuracy while keeping the network lightweight and fast. Specially, temporal feature fusion method is designed to replace the common global average pooling in our MTA CNN so as to obtain higher-dimensional feature vector and retain more information. Extensive experimental results demonstrate that our methods can achieve comparable results on Kinetics-400 and UCF101 among leading methods with less parameters and more faster recognition speed.","PeriodicalId":121049,"journal":{"name":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast Action Recognition Based on Local and Nonlocal Temporal Feature\",\"authors\":\"Zhiang Dong\",\"doi\":\"10.1109/ICISCAE52414.2021.9590691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a mixed time-asymmetric (MTA) CNN which uses time-asymmetric convolution to extract non-local temporal feature and uses normal convolution to extract local temporal features. With the fusion of local and non-local temporal feature, our MTA CNN can achieve better action recognition accuracy while keeping the network lightweight and fast. Specially, temporal feature fusion method is designed to replace the common global average pooling in our MTA CNN so as to obtain higher-dimensional feature vector and retain more information. Extensive experimental results demonstrate that our methods can achieve comparable results on Kinetics-400 and UCF101 among leading methods with less parameters and more faster recognition speed.\",\"PeriodicalId\":121049,\"journal\":{\"name\":\"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISCAE52414.2021.9590691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 4th International Conference on Information Systems and Computer Aided Education (ICISCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCAE52414.2021.9590691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种混合时间不对称(MTA) CNN,它使用时间不对称卷积提取非局部时间特征,使用正态卷积提取局部时间特征。通过局部和非局部时间特征的融合,我们的MTA CNN可以在保持网络轻量和快速的同时获得更好的动作识别精度。特别地,我们设计了时间特征融合方法来取代我们的MTA CNN中常见的全局平均池化,从而获得更高维度的特征向量,保留更多的信息。大量的实验结果表明,我们的方法可以在tics-400和UCF101上获得与领先方法相当的结果,而且参数更少,识别速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Action Recognition Based on Local and Nonlocal Temporal Feature
In this paper, we propose a mixed time-asymmetric (MTA) CNN which uses time-asymmetric convolution to extract non-local temporal feature and uses normal convolution to extract local temporal features. With the fusion of local and non-local temporal feature, our MTA CNN can achieve better action recognition accuracy while keeping the network lightweight and fast. Specially, temporal feature fusion method is designed to replace the common global average pooling in our MTA CNN so as to obtain higher-dimensional feature vector and retain more information. Extensive experimental results demonstrate that our methods can achieve comparable results on Kinetics-400 and UCF101 among leading methods with less parameters and more faster recognition speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信