基于智能的VRLA电池充电状态预测

D. Scott, Jide Lu, Haneen Aburub, Aditya Sundararajan, A. Sarwat
{"title":"基于智能的VRLA电池充电状态预测","authors":"D. Scott, Jide Lu, Haneen Aburub, Aditya Sundararajan, A. Sarwat","doi":"10.1109/ITEC-INDIA.2017.8333847","DOIUrl":null,"url":null,"abstract":"A battery management system (BMS) has three main functions, voltage monitoring, current discharge monitoring and remaining life monitoring. This paper primarily focuses on remaining life monitoring through the estimation of battery's state of charge (SOC). An Experimental set-up was prepared to measure the Valve-Regulated Lead-Acid (VRLA) battery's SOC under different operating conditions. Backpropagation (BP) neural network to estimate the battery's SOC using the experimental data. The results showed a satisfactory estimation of battery's SOC with a small (4.25%) root mean square perdition error (RMS).","PeriodicalId":312418,"journal":{"name":"2017 IEEE Transportation Electrification Conference (ITEC-India)","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An intelligence-based state of charge prediction for VRLA batteries\",\"authors\":\"D. Scott, Jide Lu, Haneen Aburub, Aditya Sundararajan, A. Sarwat\",\"doi\":\"10.1109/ITEC-INDIA.2017.8333847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A battery management system (BMS) has three main functions, voltage monitoring, current discharge monitoring and remaining life monitoring. This paper primarily focuses on remaining life monitoring through the estimation of battery's state of charge (SOC). An Experimental set-up was prepared to measure the Valve-Regulated Lead-Acid (VRLA) battery's SOC under different operating conditions. Backpropagation (BP) neural network to estimate the battery's SOC using the experimental data. The results showed a satisfactory estimation of battery's SOC with a small (4.25%) root mean square perdition error (RMS).\",\"PeriodicalId\":312418,\"journal\":{\"name\":\"2017 IEEE Transportation Electrification Conference (ITEC-India)\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Transportation Electrification Conference (ITEC-India)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITEC-INDIA.2017.8333847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Transportation Electrification Conference (ITEC-India)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITEC-INDIA.2017.8333847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电池管理系统(BMS)有三个主要功能:电压监测、电流放电监测和剩余寿命监测。本文主要研究通过估算电池的荷电状态(SOC)来进行剩余寿命监测。为测量阀控铅酸(VRLA)电池在不同工况下的荷电状态,设计了一套实验装置。利用反向传播(BP)神经网络对电池荷电状态进行估计。结果表明,该方法能较好地估计电池荷电状态,且均方根误差(RMS)很小(4.25%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An intelligence-based state of charge prediction for VRLA batteries
A battery management system (BMS) has three main functions, voltage monitoring, current discharge monitoring and remaining life monitoring. This paper primarily focuses on remaining life monitoring through the estimation of battery's state of charge (SOC). An Experimental set-up was prepared to measure the Valve-Regulated Lead-Acid (VRLA) battery's SOC under different operating conditions. Backpropagation (BP) neural network to estimate the battery's SOC using the experimental data. The results showed a satisfactory estimation of battery's SOC with a small (4.25%) root mean square perdition error (RMS).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信