互惠定律和k理论

Evgeny Musicantov, Alexander Yom Din
{"title":"互惠定律和k理论","authors":"Evgeny Musicantov, Alexander Yom Din","doi":"10.2140/akt.2017.2.27","DOIUrl":null,"url":null,"abstract":"We associate to a full flag $\\mathcal{F}$ in an $n$-dimensional variety $X$ over a field $k$, a \"symbol map\" $\\mu_{\\mathcal{F}}:K(F_X) \\to \\Sigma^n K(k)$. Here, $F_X$ is the field of rational functions on $X$, and $K(\\cdot)$ is the $K$-theory spectrum. We prove a \"reciprocity law\" for these symbols: Given a partial flag, the sum of all symbols of full flags refining it is $0$. Examining this result on the level of $K$-groups, we re-obtain various \"reciprocity laws\". Namely, when $X$ is a smooth complete curve, we obtain degree of a principal divisor is zero, Weil reciprocity, Residue theorem, Contou-Carr\\`{e}re reciprocity. When $X$ is higher-dimensional, we obtain Parshin reciprocity.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reciprocity laws and K-theory\",\"authors\":\"Evgeny Musicantov, Alexander Yom Din\",\"doi\":\"10.2140/akt.2017.2.27\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We associate to a full flag $\\\\mathcal{F}$ in an $n$-dimensional variety $X$ over a field $k$, a \\\"symbol map\\\" $\\\\mu_{\\\\mathcal{F}}:K(F_X) \\\\to \\\\Sigma^n K(k)$. Here, $F_X$ is the field of rational functions on $X$, and $K(\\\\cdot)$ is the $K$-theory spectrum. We prove a \\\"reciprocity law\\\" for these symbols: Given a partial flag, the sum of all symbols of full flags refining it is $0$. Examining this result on the level of $K$-groups, we re-obtain various \\\"reciprocity laws\\\". Namely, when $X$ is a smooth complete curve, we obtain degree of a principal divisor is zero, Weil reciprocity, Residue theorem, Contou-Carr\\\\`{e}re reciprocity. When $X$ is higher-dimensional, we obtain Parshin reciprocity.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2017.2.27\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2017.2.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们将一个“符号映射”$\mu_{\mathcal{F}}:K(F_X) \to \Sigma^n K(k)$关联到字段$k$上的一个$n$维变量$X$中的一个完整标志$\mathcal{F}$。这里,$F_X$是$X$上的有理函数场,$K(\cdot)$是$K$ -理论谱。我们证明了这些符号的“互惠定律”:给定一个部分标志,它的所有完整标志的和等于$0$。在$K$ -组的层次上检验这一结果,我们重新得到了各种“互易律”。即当$X$为光滑完全曲线时,得到主因子的阶为零、Weil互易性、残数定理、contou - carr互易性。当$X$是高维时,我们得到Parshin互易性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reciprocity laws and K-theory
We associate to a full flag $\mathcal{F}$ in an $n$-dimensional variety $X$ over a field $k$, a "symbol map" $\mu_{\mathcal{F}}:K(F_X) \to \Sigma^n K(k)$. Here, $F_X$ is the field of rational functions on $X$, and $K(\cdot)$ is the $K$-theory spectrum. We prove a "reciprocity law" for these symbols: Given a partial flag, the sum of all symbols of full flags refining it is $0$. Examining this result on the level of $K$-groups, we re-obtain various "reciprocity laws". Namely, when $X$ is a smooth complete curve, we obtain degree of a principal divisor is zero, Weil reciprocity, Residue theorem, Contou-Carr\`{e}re reciprocity. When $X$ is higher-dimensional, we obtain Parshin reciprocity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信