文本挖掘分类技术综述

S. Brindha, K. Prabha, S. Sukumaran
{"title":"文本挖掘分类技术综述","authors":"S. Brindha, K. Prabha, S. Sukumaran","doi":"10.1109/ICACCS.2016.7586371","DOIUrl":null,"url":null,"abstract":"The development of the World Wide Web it is no longer feasible for a user can understand all the data coming from classify into categories. The expansion of information and power automatic classification of data and textual data gains increasingly and give high performance. In this paper five important text classifications are described Naive Bayesian, K-Nearest Neighbour, Support Vector Machine, Decision Tree and Regression. Which are categorized the text data into pre define class. The target of the paper is to study different classification techniques and finding the classification accuracy for different datasets. An efficient and effective text documents into mutually exclusive categories.","PeriodicalId":176803,"journal":{"name":"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A survey on classification techniques for text mining\",\"authors\":\"S. Brindha, K. Prabha, S. Sukumaran\",\"doi\":\"10.1109/ICACCS.2016.7586371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of the World Wide Web it is no longer feasible for a user can understand all the data coming from classify into categories. The expansion of information and power automatic classification of data and textual data gains increasingly and give high performance. In this paper five important text classifications are described Naive Bayesian, K-Nearest Neighbour, Support Vector Machine, Decision Tree and Regression. Which are categorized the text data into pre define class. The target of the paper is to study different classification techniques and finding the classification accuracy for different datasets. An efficient and effective text documents into mutually exclusive categories.\",\"PeriodicalId\":176803,\"journal\":{\"name\":\"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACCS.2016.7586371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACCS.2016.7586371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

万维网的发展使它不再可行,用户可以理解所有来自分类的数据。随着信息的扩展,数据和文本数据的自动分类能力日益增强,并给出了较高的性能。本文介绍了朴素贝叶斯、k近邻、支持向量机、决策树和回归五种重要的文本分类方法。将文本数据分类到预定义类中。本文的目标是研究不同的分类技术,并找到不同数据集的分类精度。将高效和有效的文本文档分为互斥的类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A survey on classification techniques for text mining
The development of the World Wide Web it is no longer feasible for a user can understand all the data coming from classify into categories. The expansion of information and power automatic classification of data and textual data gains increasingly and give high performance. In this paper five important text classifications are described Naive Bayesian, K-Nearest Neighbour, Support Vector Machine, Decision Tree and Regression. Which are categorized the text data into pre define class. The target of the paper is to study different classification techniques and finding the classification accuracy for different datasets. An efficient and effective text documents into mutually exclusive categories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信