垂直悬索系统瞬时载荷试验研究

Wei-Ting Hsu, Tzu-Ching Chuang, W. Hsu, K. Sharman, Ray-Yeng Yang
{"title":"垂直悬索系统瞬时载荷试验研究","authors":"Wei-Ting Hsu, Tzu-Ching Chuang, W. Hsu, K. Sharman, Ray-Yeng Yang","doi":"10.1115/omae2019-96424","DOIUrl":null,"url":null,"abstract":"\n Sudden snap events on mooring lines and hanging cables can cause spikes in tension, resulting in reduced safety factors during extreme events. For example, the mooring system of a floating offshore wind turbine (FOWT) can be exposed to wave-induced motions making the former vulnerable to snap type impact. Suitable criteria to define snap events are still largely unclear, making current design practices overly conservative.\n To understand the underlying physics of snap loads on a mooring line system, this paper presents a theoretical development and an experimental parametric study of snap events. The effects of the nonlinearity of bilinear line stiffness and hydrodynamic drag force, as well as the weight of payload on snap events are investigated using the vertical hanging cable model. This cable model includes two springs in series and a payload. The bilinear spring model is designed to create nonlinear dynamic tension. A total of 108 tests were conducted in the wave tank of Tainan Hydraulic Laboratory. The excitation amplitude ranges from 0.01 to 0.04m; excitation time period ranges from 0.5 to 2s; the weight of payload ranges from 6.13 to 18.95N. The tests carried out in water are compared to those conducted in air. It is seen that the hydrodynamic drag force together with the small pretension could result in larger normalized tension ranges.","PeriodicalId":120800,"journal":{"name":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Experimental Study of Snap Loads on a Vertical Hanging Cable System\",\"authors\":\"Wei-Ting Hsu, Tzu-Ching Chuang, W. Hsu, K. Sharman, Ray-Yeng Yang\",\"doi\":\"10.1115/omae2019-96424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Sudden snap events on mooring lines and hanging cables can cause spikes in tension, resulting in reduced safety factors during extreme events. For example, the mooring system of a floating offshore wind turbine (FOWT) can be exposed to wave-induced motions making the former vulnerable to snap type impact. Suitable criteria to define snap events are still largely unclear, making current design practices overly conservative.\\n To understand the underlying physics of snap loads on a mooring line system, this paper presents a theoretical development and an experimental parametric study of snap events. The effects of the nonlinearity of bilinear line stiffness and hydrodynamic drag force, as well as the weight of payload on snap events are investigated using the vertical hanging cable model. This cable model includes two springs in series and a payload. The bilinear spring model is designed to create nonlinear dynamic tension. A total of 108 tests were conducted in the wave tank of Tainan Hydraulic Laboratory. The excitation amplitude ranges from 0.01 to 0.04m; excitation time period ranges from 0.5 to 2s; the weight of payload ranges from 6.13 to 18.95N. The tests carried out in water are compared to those conducted in air. It is seen that the hydrodynamic drag force together with the small pretension could result in larger normalized tension ranges.\",\"PeriodicalId\":120800,\"journal\":{\"name\":\"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/omae2019-96424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Rodney Eatock Taylor Honoring Symposium on Marine and Offshore Hydrodynamics; Takeshi Kinoshita Honoring Symposium on Offshore Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在极端情况下,系泊线和悬挂电缆上的突然断裂事件会导致张力峰值,从而降低安全系数。例如,浮式海上风力涡轮机(FOWT)的系泊系统可能会受到波浪运动的影响,使其容易受到冲击。定义snap事件的合适标准在很大程度上仍然不清楚,这使得当前的设计实践过于保守。为了了解系泊缆绳系统中瞬时载荷的基本物理特性,本文介绍了瞬时载荷的理论发展和实验参数研究。采用垂直悬索模型,研究了双线性线刚度和水动力阻力的非线性以及有效载荷重量对悬索断裂事件的影响。该电缆模型包括两个串联弹簧和一个有效载荷。设计了双线性弹簧模型来产生非线性动态张力。在台南水工实验室波浪池内共进行了108次试验。激励幅值范围为0.01 ~ 0.04m;激励周期为0.5 ~ 2s;有效载荷重量范围为6.13至18.95牛。将在水中进行的试验与在空气中进行的试验进行比较。可见,水动力阻力加上较小的预紧力可以得到较大的归一化张力范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Experimental Study of Snap Loads on a Vertical Hanging Cable System
Sudden snap events on mooring lines and hanging cables can cause spikes in tension, resulting in reduced safety factors during extreme events. For example, the mooring system of a floating offshore wind turbine (FOWT) can be exposed to wave-induced motions making the former vulnerable to snap type impact. Suitable criteria to define snap events are still largely unclear, making current design practices overly conservative. To understand the underlying physics of snap loads on a mooring line system, this paper presents a theoretical development and an experimental parametric study of snap events. The effects of the nonlinearity of bilinear line stiffness and hydrodynamic drag force, as well as the weight of payload on snap events are investigated using the vertical hanging cable model. This cable model includes two springs in series and a payload. The bilinear spring model is designed to create nonlinear dynamic tension. A total of 108 tests were conducted in the wave tank of Tainan Hydraulic Laboratory. The excitation amplitude ranges from 0.01 to 0.04m; excitation time period ranges from 0.5 to 2s; the weight of payload ranges from 6.13 to 18.95N. The tests carried out in water are compared to those conducted in air. It is seen that the hydrodynamic drag force together with the small pretension could result in larger normalized tension ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信