{"title":"微结构级晶体管老化损耗的建模与分析","authors":"Fabian Oboril, M. Tahoori","doi":"10.1109/DSN.2012.6263957","DOIUrl":null,"url":null,"abstract":"With shrinking feature sizes, transistor aging due to NBTI and HCI becomes a major reliability challenge for microprocessors. These processes lead to increased gate delays, more failures during runtime and eventually reduced operational lifetime. Currently, to ensure correct functionality for a certain operational lifetime, additional timing margins are added to the design. However, this approach implies a significant performance loss and may fail to meet reliability requirements. Therefore, aging-aware microarchitecture design is inevitable. In this paper we present ExtraTime, a novel microarchitectural aging analysis framework, which can be used in early design phases when detailed transistor-level information is not yet available to model, analyze, and predict performance, power and aging. Furthermore, we show a comprehensive investigation using ExtraTime of various clock and power gating strategies as well as aging-aware instruction scheduling policies as a case study to show the impact of the architecture on aging.","PeriodicalId":236791,"journal":{"name":"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)","volume":"59 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"109","resultStr":"{\"title\":\"ExtraTime: Modeling and analysis of wearout due to transistor aging at microarchitecture-level\",\"authors\":\"Fabian Oboril, M. Tahoori\",\"doi\":\"10.1109/DSN.2012.6263957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With shrinking feature sizes, transistor aging due to NBTI and HCI becomes a major reliability challenge for microprocessors. These processes lead to increased gate delays, more failures during runtime and eventually reduced operational lifetime. Currently, to ensure correct functionality for a certain operational lifetime, additional timing margins are added to the design. However, this approach implies a significant performance loss and may fail to meet reliability requirements. Therefore, aging-aware microarchitecture design is inevitable. In this paper we present ExtraTime, a novel microarchitectural aging analysis framework, which can be used in early design phases when detailed transistor-level information is not yet available to model, analyze, and predict performance, power and aging. Furthermore, we show a comprehensive investigation using ExtraTime of various clock and power gating strategies as well as aging-aware instruction scheduling policies as a case study to show the impact of the architecture on aging.\",\"PeriodicalId\":236791,\"journal\":{\"name\":\"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)\",\"volume\":\"59 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSN.2012.6263957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2012.6263957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ExtraTime: Modeling and analysis of wearout due to transistor aging at microarchitecture-level
With shrinking feature sizes, transistor aging due to NBTI and HCI becomes a major reliability challenge for microprocessors. These processes lead to increased gate delays, more failures during runtime and eventually reduced operational lifetime. Currently, to ensure correct functionality for a certain operational lifetime, additional timing margins are added to the design. However, this approach implies a significant performance loss and may fail to meet reliability requirements. Therefore, aging-aware microarchitecture design is inevitable. In this paper we present ExtraTime, a novel microarchitectural aging analysis framework, which can be used in early design phases when detailed transistor-level information is not yet available to model, analyze, and predict performance, power and aging. Furthermore, we show a comprehensive investigation using ExtraTime of various clock and power gating strategies as well as aging-aware instruction scheduling policies as a case study to show the impact of the architecture on aging.