R. Gil-Pita, Héctor A. Sánchez-Hevia, C. Llerena, Inma Mohino-Herranz, M. Utrilla-Manso, M. Rosa-Zurera
{"title":"双耳助听器分布式协同声环境信息提取","authors":"R. Gil-Pita, Héctor A. Sánchez-Hevia, C. Llerena, Inma Mohino-Herranz, M. Utrilla-Manso, M. Rosa-Zurera","doi":"10.1109/SAM.2016.7569708","DOIUrl":null,"url":null,"abstract":"Current research in the field of Wireless Acoustic Sensor Networks (WASN) is gradually introducing the use of sound spatial techniques in the field of binaural hearing aids, in which sound environment information must be extracted in order to tune up the main hearing aid algorithms. In binaural hearing aids, computational capability, memory and data transmission are strictly constrained, which makes the use of distributed and collaborative approaches suitable. This paper proposes solutions for the collaborative and distributed sound environment information extraction through the estimation of the different noise levels, analyzing both the performance and the computational and transmission requirements. Results demonstrate that the proposed distributed solutions highly reduce the transmission rate and the computational cost, while maintaining the accuracy in the estimations.","PeriodicalId":159236,"journal":{"name":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed and collaborative sound environment information extraction in binaural hearing aids\",\"authors\":\"R. Gil-Pita, Héctor A. Sánchez-Hevia, C. Llerena, Inma Mohino-Herranz, M. Utrilla-Manso, M. Rosa-Zurera\",\"doi\":\"10.1109/SAM.2016.7569708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current research in the field of Wireless Acoustic Sensor Networks (WASN) is gradually introducing the use of sound spatial techniques in the field of binaural hearing aids, in which sound environment information must be extracted in order to tune up the main hearing aid algorithms. In binaural hearing aids, computational capability, memory and data transmission are strictly constrained, which makes the use of distributed and collaborative approaches suitable. This paper proposes solutions for the collaborative and distributed sound environment information extraction through the estimation of the different noise levels, analyzing both the performance and the computational and transmission requirements. Results demonstrate that the proposed distributed solutions highly reduce the transmission rate and the computational cost, while maintaining the accuracy in the estimations.\",\"PeriodicalId\":159236,\"journal\":{\"name\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2016.7569708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2016.7569708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distributed and collaborative sound environment information extraction in binaural hearing aids
Current research in the field of Wireless Acoustic Sensor Networks (WASN) is gradually introducing the use of sound spatial techniques in the field of binaural hearing aids, in which sound environment information must be extracted in order to tune up the main hearing aid algorithms. In binaural hearing aids, computational capability, memory and data transmission are strictly constrained, which makes the use of distributed and collaborative approaches suitable. This paper proposes solutions for the collaborative and distributed sound environment information extraction through the estimation of the different noise levels, analyzing both the performance and the computational and transmission requirements. Results demonstrate that the proposed distributed solutions highly reduce the transmission rate and the computational cost, while maintaining the accuracy in the estimations.