{"title":"模拟水泥塞水化过程中的应力演化","authors":"A. Moghadam, A. Corina","doi":"10.56952/arma-2022-0096","DOIUrl":null,"url":null,"abstract":"In this work, we have developed a methodology to model the stress evolution in cement plugs during hydration. The model begins with the slurry state of cement and calculates the water consumption and void creation over time as the hydration reactions progress. The void volume change due to chemical shrinkage is imported into a coupled mechanical model that calculates the pore pressure drop and the resulting change in stresses. The results of the proposed modelling methodology are verified using lab experiments from the literature. The results provide new insights in understanding cement behavior under lab and field conditions. Under most scenarios, cement’s pore pressure drops to saturation pressure of water which leads to partial evaporation of the remaining pore water. This pore pressure drop controls the radial stress change, according to the theory of poroelasticity. For a plug set under an initial pressure of 5 MPa, the radial stress drops to 1.6 MPa after 20 hours of curing. This stress drop can cause the cement to debond from the casing, if the fluid pressure above the plug exceeds the final radial stress. This methodology can be extended to annular cements and initial cement stress after placement can be readily calculated.","PeriodicalId":418045,"journal":{"name":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling stress evolution in cement plugs during hydration\",\"authors\":\"A. Moghadam, A. Corina\",\"doi\":\"10.56952/arma-2022-0096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we have developed a methodology to model the stress evolution in cement plugs during hydration. The model begins with the slurry state of cement and calculates the water consumption and void creation over time as the hydration reactions progress. The void volume change due to chemical shrinkage is imported into a coupled mechanical model that calculates the pore pressure drop and the resulting change in stresses. The results of the proposed modelling methodology are verified using lab experiments from the literature. The results provide new insights in understanding cement behavior under lab and field conditions. Under most scenarios, cement’s pore pressure drops to saturation pressure of water which leads to partial evaporation of the remaining pore water. This pore pressure drop controls the radial stress change, according to the theory of poroelasticity. For a plug set under an initial pressure of 5 MPa, the radial stress drops to 1.6 MPa after 20 hours of curing. This stress drop can cause the cement to debond from the casing, if the fluid pressure above the plug exceeds the final radial stress. This methodology can be extended to annular cements and initial cement stress after placement can be readily calculated.\",\"PeriodicalId\":418045,\"journal\":{\"name\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 56th US Rock Mechanics / Geomechanics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56952/arma-2022-0096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 56th US Rock Mechanics / Geomechanics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56952/arma-2022-0096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modelling stress evolution in cement plugs during hydration
In this work, we have developed a methodology to model the stress evolution in cement plugs during hydration. The model begins with the slurry state of cement and calculates the water consumption and void creation over time as the hydration reactions progress. The void volume change due to chemical shrinkage is imported into a coupled mechanical model that calculates the pore pressure drop and the resulting change in stresses. The results of the proposed modelling methodology are verified using lab experiments from the literature. The results provide new insights in understanding cement behavior under lab and field conditions. Under most scenarios, cement’s pore pressure drops to saturation pressure of water which leads to partial evaporation of the remaining pore water. This pore pressure drop controls the radial stress change, according to the theory of poroelasticity. For a plug set under an initial pressure of 5 MPa, the radial stress drops to 1.6 MPa after 20 hours of curing. This stress drop can cause the cement to debond from the casing, if the fluid pressure above the plug exceeds the final radial stress. This methodology can be extended to annular cements and initial cement stress after placement can be readily calculated.