分布式环境中科学应用的数据放置

A. Chervenak, E. Deelman, M. Livny, Mei-Hui Su, R. Schuler, S. Bharathi, Gaurang Mehta, K. Vahi
{"title":"分布式环境中科学应用的数据放置","authors":"A. Chervenak, E. Deelman, M. Livny, Mei-Hui Su, R. Schuler, S. Bharathi, Gaurang Mehta, K. Vahi","doi":"10.1109/GRID.2007.4354142","DOIUrl":null,"url":null,"abstract":"Scientific applications often perform complex computational analyses that consume and produce large data sets. We are concerned with data placement policies that distribute data in ways that are advantageous for application execution, for example, by placing data sets so that they may be staged into or out of computations efficiently or by replicating them for improved performance and reliability. In particular, we propose to study the relationship between data placement services and workflow management systems. In this paper, we explore the interactions between two services used in large-scale science today. We evaluate the benefits of prestaging data using the Data Replication Service versus using the native data stage-in mechanisms of the Pegasus workflow management system. We use the astronomy application, Montage, for our experiments and modify it to study the effect of input data size on the benefits of data prestaging. As the size of input data sets increases, prestaging using a data placement service can significantly improve the performance of the overall analysis.","PeriodicalId":304508,"journal":{"name":"2007 8th IEEE/ACM International Conference on Grid Computing","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"117","resultStr":"{\"title\":\"Data placement for scientific applications in distributed environments\",\"authors\":\"A. Chervenak, E. Deelman, M. Livny, Mei-Hui Su, R. Schuler, S. Bharathi, Gaurang Mehta, K. Vahi\",\"doi\":\"10.1109/GRID.2007.4354142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scientific applications often perform complex computational analyses that consume and produce large data sets. We are concerned with data placement policies that distribute data in ways that are advantageous for application execution, for example, by placing data sets so that they may be staged into or out of computations efficiently or by replicating them for improved performance and reliability. In particular, we propose to study the relationship between data placement services and workflow management systems. In this paper, we explore the interactions between two services used in large-scale science today. We evaluate the benefits of prestaging data using the Data Replication Service versus using the native data stage-in mechanisms of the Pegasus workflow management system. We use the astronomy application, Montage, for our experiments and modify it to study the effect of input data size on the benefits of data prestaging. As the size of input data sets increases, prestaging using a data placement service can significantly improve the performance of the overall analysis.\",\"PeriodicalId\":304508,\"journal\":{\"name\":\"2007 8th IEEE/ACM International Conference on Grid Computing\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"117\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 8th IEEE/ACM International Conference on Grid Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRID.2007.4354142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 8th IEEE/ACM International Conference on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRID.2007.4354142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 117

摘要

科学应用程序经常执行复杂的计算分析,消耗和产生大量数据集。我们关注的是数据放置策略,它以有利于应用程序执行的方式分发数据,例如,通过放置数据集,使它们可以有效地进入或退出计算,或者通过复制它们以提高性能和可靠性。特别是,我们建议研究数据放置服务和工作流管理系统之间的关系。在本文中,我们探讨了当今大规模科学中使用的两种服务之间的相互作用。我们评估了使用数据复制服务预准备数据与使用Pegasus工作流管理系统的本地数据预准备机制的优势。我们使用天文学应用程序蒙太奇进行实验,并对其进行修改,以研究输入数据大小对数据预staging收益的影响。随着输入数据集大小的增加,使用数据放置服务进行预部署可以显著提高整体分析的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data placement for scientific applications in distributed environments
Scientific applications often perform complex computational analyses that consume and produce large data sets. We are concerned with data placement policies that distribute data in ways that are advantageous for application execution, for example, by placing data sets so that they may be staged into or out of computations efficiently or by replicating them for improved performance and reliability. In particular, we propose to study the relationship between data placement services and workflow management systems. In this paper, we explore the interactions between two services used in large-scale science today. We evaluate the benefits of prestaging data using the Data Replication Service versus using the native data stage-in mechanisms of the Pegasus workflow management system. We use the astronomy application, Montage, for our experiments and modify it to study the effect of input data size on the benefits of data prestaging. As the size of input data sets increases, prestaging using a data placement service can significantly improve the performance of the overall analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信