NLP后门检测的模型不可知方法

Hema Karnam Surendrababu
{"title":"NLP后门检测的模型不可知方法","authors":"Hema Karnam Surendrababu","doi":"10.1109/ColCACI59285.2023.10226144","DOIUrl":null,"url":null,"abstract":"Poisoning training datasets by inserting backdoors into Natural Language Processing (NLP) models can result in model misclassifications with potential adverse impacts such as evasion of toxic content detection systems, fake news publication. A majority of the NLP backdoor defenses focus on model specific defenses. The current work proposes a model agnostic approach for NLP backdoor detection. To this end two metrics are developed to successfully distinguish between clean and poisoned text data samples.","PeriodicalId":206196,"journal":{"name":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Agnostic Approach for NLP Backdoor Detection\",\"authors\":\"Hema Karnam Surendrababu\",\"doi\":\"10.1109/ColCACI59285.2023.10226144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poisoning training datasets by inserting backdoors into Natural Language Processing (NLP) models can result in model misclassifications with potential adverse impacts such as evasion of toxic content detection systems, fake news publication. A majority of the NLP backdoor defenses focus on model specific defenses. The current work proposes a model agnostic approach for NLP backdoor detection. To this end two metrics are developed to successfully distinguish between clean and poisoned text data samples.\",\"PeriodicalId\":206196,\"journal\":{\"name\":\"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ColCACI59285.2023.10226144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Colombian Conference on Applications of Computational Intelligence (ColCACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ColCACI59285.2023.10226144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过在自然语言处理(NLP)模型中插入后门来毒害训练数据集可能导致模型错误分类,从而产生潜在的不利影响,例如逃避有毒内容检测系统,虚假新闻发布。大多数NLP后门防御侧重于特定于模型的防御。目前的工作提出了一种模型不可知的NLP后门检测方法。为此,开发了两个指标来成功区分干净和有毒的文本数据样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Agnostic Approach for NLP Backdoor Detection
Poisoning training datasets by inserting backdoors into Natural Language Processing (NLP) models can result in model misclassifications with potential adverse impacts such as evasion of toxic content detection systems, fake news publication. A majority of the NLP backdoor defenses focus on model specific defenses. The current work proposes a model agnostic approach for NLP backdoor detection. To this end two metrics are developed to successfully distinguish between clean and poisoned text data samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信