{"title":"基于主向量子空间的人脸识别","authors":"Lingling Peng, Qiong Kang","doi":"10.1109/ISIC.2012.6449765","DOIUrl":null,"url":null,"abstract":"Principle component analysis (PCA) and its improved models have found wide applications in pattern recognition field. PCA is a common method applied to dimensionality reduction and feature extraction. Its goal is to choose a set of projection directions to represent original data with the minimum MSE. In this paper, we propose a Principle Vectors Subspace (PVS) for face recognition. Firstly, we use PCA to extract each dimension vector, so we attain a subspace which conclude principle vectors of each dimension. Then we use a base of this subspace to represent a test sample and classify it by Nearest Neighbor classifier. In order to evaluate the performance of our method, we make a comparison of PCA, KPCA and our method on the ORL and AR databases. The experimental results show our method take a good performance.","PeriodicalId":393653,"journal":{"name":"2012 International Conference on Information Security and Intelligent Control","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face recognition by Principle Vectors Subspace\",\"authors\":\"Lingling Peng, Qiong Kang\",\"doi\":\"10.1109/ISIC.2012.6449765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principle component analysis (PCA) and its improved models have found wide applications in pattern recognition field. PCA is a common method applied to dimensionality reduction and feature extraction. Its goal is to choose a set of projection directions to represent original data with the minimum MSE. In this paper, we propose a Principle Vectors Subspace (PVS) for face recognition. Firstly, we use PCA to extract each dimension vector, so we attain a subspace which conclude principle vectors of each dimension. Then we use a base of this subspace to represent a test sample and classify it by Nearest Neighbor classifier. In order to evaluate the performance of our method, we make a comparison of PCA, KPCA and our method on the ORL and AR databases. The experimental results show our method take a good performance.\",\"PeriodicalId\":393653,\"journal\":{\"name\":\"2012 International Conference on Information Security and Intelligent Control\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Security and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2012.6449765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Security and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6449765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Principle component analysis (PCA) and its improved models have found wide applications in pattern recognition field. PCA is a common method applied to dimensionality reduction and feature extraction. Its goal is to choose a set of projection directions to represent original data with the minimum MSE. In this paper, we propose a Principle Vectors Subspace (PVS) for face recognition. Firstly, we use PCA to extract each dimension vector, so we attain a subspace which conclude principle vectors of each dimension. Then we use a base of this subspace to represent a test sample and classify it by Nearest Neighbor classifier. In order to evaluate the performance of our method, we make a comparison of PCA, KPCA and our method on the ORL and AR databases. The experimental results show our method take a good performance.