基于主向量子空间的人脸识别

Lingling Peng, Qiong Kang
{"title":"基于主向量子空间的人脸识别","authors":"Lingling Peng, Qiong Kang","doi":"10.1109/ISIC.2012.6449765","DOIUrl":null,"url":null,"abstract":"Principle component analysis (PCA) and its improved models have found wide applications in pattern recognition field. PCA is a common method applied to dimensionality reduction and feature extraction. Its goal is to choose a set of projection directions to represent original data with the minimum MSE. In this paper, we propose a Principle Vectors Subspace (PVS) for face recognition. Firstly, we use PCA to extract each dimension vector, so we attain a subspace which conclude principle vectors of each dimension. Then we use a base of this subspace to represent a test sample and classify it by Nearest Neighbor classifier. In order to evaluate the performance of our method, we make a comparison of PCA, KPCA and our method on the ORL and AR databases. The experimental results show our method take a good performance.","PeriodicalId":393653,"journal":{"name":"2012 International Conference on Information Security and Intelligent Control","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Face recognition by Principle Vectors Subspace\",\"authors\":\"Lingling Peng, Qiong Kang\",\"doi\":\"10.1109/ISIC.2012.6449765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Principle component analysis (PCA) and its improved models have found wide applications in pattern recognition field. PCA is a common method applied to dimensionality reduction and feature extraction. Its goal is to choose a set of projection directions to represent original data with the minimum MSE. In this paper, we propose a Principle Vectors Subspace (PVS) for face recognition. Firstly, we use PCA to extract each dimension vector, so we attain a subspace which conclude principle vectors of each dimension. Then we use a base of this subspace to represent a test sample and classify it by Nearest Neighbor classifier. In order to evaluate the performance of our method, we make a comparison of PCA, KPCA and our method on the ORL and AR databases. The experimental results show our method take a good performance.\",\"PeriodicalId\":393653,\"journal\":{\"name\":\"2012 International Conference on Information Security and Intelligent Control\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Information Security and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.2012.6449765\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Information Security and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.2012.6449765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

主成分分析(PCA)及其改进模型在模式识别领域有着广泛的应用。PCA是一种常用的降维和特征提取方法。其目标是选择一组投影方向来表示具有最小MSE的原始数据。本文提出了一种用于人脸识别的主向量子空间(PVS)。首先,利用主成分分析法提取各维向量,得到包含各维主向量的子空间;然后用该子空间的一个基来表示测试样本,并用最近邻分类器对其进行分类。为了评估我们的方法的性能,我们在ORL和AR数据库上对PCA、KPCA和我们的方法进行了比较。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition by Principle Vectors Subspace
Principle component analysis (PCA) and its improved models have found wide applications in pattern recognition field. PCA is a common method applied to dimensionality reduction and feature extraction. Its goal is to choose a set of projection directions to represent original data with the minimum MSE. In this paper, we propose a Principle Vectors Subspace (PVS) for face recognition. Firstly, we use PCA to extract each dimension vector, so we attain a subspace which conclude principle vectors of each dimension. Then we use a base of this subspace to represent a test sample and classify it by Nearest Neighbor classifier. In order to evaluate the performance of our method, we make a comparison of PCA, KPCA and our method on the ORL and AR databases. The experimental results show our method take a good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信