懒惰的反事实的象征性执行

William T. Hallahan, Anton Xue, M. Bland, Ranjit Jhala, R. Piskac
{"title":"懒惰的反事实的象征性执行","authors":"William T. Hallahan, Anton Xue, M. Bland, Ranjit Jhala, R. Piskac","doi":"10.1145/3314221.3314618","DOIUrl":null,"url":null,"abstract":"We present counterfactual symbolic execution, a new approach that produces counterexamples that localize the causes of failure of static verification. First, we develop a notion of symbolic weak head normal form and use it to define lazy symbolic execution reduction rules for non-strict languages like Haskell. Second, we introduce counterfactual branching, a new method to identify places where verification fails due to imprecise specifications (as opposed to incorrect code). Third, we show how to use counterfactual symbolic execution to localize refinement type errors, by translating refinement types into assertions. We implement our approach in a new Haskell symbolic execution engine, G2, and evaluate it on a corpus of 7550 errors gathered from users of the LiquidHaskell refinement type system. We show that for 97.7% of these errors, G2 is able to quickly find counterexamples that show how the code or specifications must be fixed to enable verification.","PeriodicalId":441774,"journal":{"name":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Lazy counterfactual symbolic execution\",\"authors\":\"William T. Hallahan, Anton Xue, M. Bland, Ranjit Jhala, R. Piskac\",\"doi\":\"10.1145/3314221.3314618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present counterfactual symbolic execution, a new approach that produces counterexamples that localize the causes of failure of static verification. First, we develop a notion of symbolic weak head normal form and use it to define lazy symbolic execution reduction rules for non-strict languages like Haskell. Second, we introduce counterfactual branching, a new method to identify places where verification fails due to imprecise specifications (as opposed to incorrect code). Third, we show how to use counterfactual symbolic execution to localize refinement type errors, by translating refinement types into assertions. We implement our approach in a new Haskell symbolic execution engine, G2, and evaluate it on a corpus of 7550 errors gathered from users of the LiquidHaskell refinement type system. We show that for 97.7% of these errors, G2 is able to quickly find counterexamples that show how the code or specifications must be fixed to enable verification.\",\"PeriodicalId\":441774,\"journal\":{\"name\":\"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3314221.3314618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314221.3314618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们提出了反事实符号执行,这是一种产生反例的新方法,可以定位静态验证失败的原因。首先,我们提出了符号弱头范式的概念,并用它来定义非严格语言(如Haskell)的惰性符号执行缩减规则。其次,我们引入了反事实分支,这是一种新的方法,用于识别由于不精确的规范(与不正确的代码相反)而导致验证失败的地方。第三,我们将展示如何使用反事实符号执行,通过将细化类型转换为断言来定位细化类型错误。我们在一个新的Haskell符号执行引擎G2中实现了我们的方法,并在从LiquidHaskell细化类型系统的用户那里收集的7550个错误语料库上对它进行了评估。我们表明,对于97.7%的这些错误,G2能够快速找到反例,这些反例表明必须如何修复代码或规范以启用验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lazy counterfactual symbolic execution
We present counterfactual symbolic execution, a new approach that produces counterexamples that localize the causes of failure of static verification. First, we develop a notion of symbolic weak head normal form and use it to define lazy symbolic execution reduction rules for non-strict languages like Haskell. Second, we introduce counterfactual branching, a new method to identify places where verification fails due to imprecise specifications (as opposed to incorrect code). Third, we show how to use counterfactual symbolic execution to localize refinement type errors, by translating refinement types into assertions. We implement our approach in a new Haskell symbolic execution engine, G2, and evaluate it on a corpus of 7550 errors gathered from users of the LiquidHaskell refinement type system. We show that for 97.7% of these errors, G2 is able to quickly find counterexamples that show how the code or specifications must be fixed to enable verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信