使用FastText方法检测印度尼西亚Instagram评论中的仇恨言论

Nur Indah Pratiwi, I. Budi, Ika Alfina
{"title":"使用FastText方法检测印度尼西亚Instagram评论中的仇恨言论","authors":"Nur Indah Pratiwi, I. Budi, Ika Alfina","doi":"10.1109/ICACSIS.2018.8618182","DOIUrl":null,"url":null,"abstract":"Instagram is one of social media hype, potentially used to spread hatred. The objective of our study is to conduct hate speech detection on Instagram comments for Indonesian language. We used FastText as the classifier and word representation. The experiment results showed that FastText is better than Random Forest Decision Tree and Logistic Regression. The highest result achieved when FastText is combined with bigram feature with F-measure of 65.7%.","PeriodicalId":207227,"journal":{"name":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Hate Speech Detection on Indonesian Instagram Comments using FastText Approach\",\"authors\":\"Nur Indah Pratiwi, I. Budi, Ika Alfina\",\"doi\":\"10.1109/ICACSIS.2018.8618182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Instagram is one of social media hype, potentially used to spread hatred. The objective of our study is to conduct hate speech detection on Instagram comments for Indonesian language. We used FastText as the classifier and word representation. The experiment results showed that FastText is better than Random Forest Decision Tree and Logistic Regression. The highest result achieved when FastText is combined with bigram feature with F-measure of 65.7%.\",\"PeriodicalId\":207227,\"journal\":{\"name\":\"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS.2018.8618182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS.2018.8618182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

Instagram是一种社交媒体炒作,可能被用来传播仇恨。我们研究的目的是对印度尼西亚语的Instagram评论进行仇恨言论检测。我们使用FastText作为分类器和单词表示。实验结果表明,FastText算法优于随机森林决策树和逻辑回归算法。当FastText与双字特征结合使用时,f值达到65.7%,达到了最高的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hate Speech Detection on Indonesian Instagram Comments using FastText Approach
Instagram is one of social media hype, potentially used to spread hatred. The objective of our study is to conduct hate speech detection on Instagram comments for Indonesian language. We used FastText as the classifier and word representation. The experiment results showed that FastText is better than Random Forest Decision Tree and Logistic Regression. The highest result achieved when FastText is combined with bigram feature with F-measure of 65.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信