使用通用和集成学习对运行时硬件支持的恶意软件检测进行全面评估

H. Sayadi, Sai Manoj Pudukotai Dinakarrao, A. Houmansadr, S. Rafatirad, H. Homayoun
{"title":"使用通用和集成学习对运行时硬件支持的恶意软件检测进行全面评估","authors":"H. Sayadi, Sai Manoj Pudukotai Dinakarrao, A. Houmansadr, S. Rafatirad, H. Homayoun","doi":"10.1145/3203217.3203264","DOIUrl":null,"url":null,"abstract":"Recent studies have demonstrated the effectiveness of Hardware Performance Counters (HPCs) for detecting pattern of malicious applications. Hardware-supported detectors utilize Machine Learning (ML) classifiers for malware detection by analyzing a large number of HPC features, more than the very limited number of HPC registers available in modern microprocessors. Obtaining more HPCs requires running the application (malware or benign) more than once to collect the required data, which in turn makes the solution less practical for run-time detection of malware. In response to this challenge, in this work, we first identify the critical HPC features required for malware detection. Next, we explore the use of various ML techniques to classify benign and malware applications using the selected HPCs at run-time. Further, we investigate the effectiveness of ensemble learning in improving the performance of ML classifiers. For this purpose, we apply AdaBoost on all general ML classifiers. We thoroughly compare the general and ensemble ML classifiers in terms of accuracy, robustness, performance, and hardware overhead. The experimental results indicate that ensemble learning enhances the performance of malware detection for rule-based and tree-based algorithms up to 13%. However, it diminishes the performance of neural network and Bayesian network-based detectors by 6% and 4%, respectively.","PeriodicalId":127096,"journal":{"name":"Proceedings of the 15th ACM International Conference on Computing Frontiers","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Comprehensive assessment of run-time hardware-supported malware detection using general and ensemble learning\",\"authors\":\"H. Sayadi, Sai Manoj Pudukotai Dinakarrao, A. Houmansadr, S. Rafatirad, H. Homayoun\",\"doi\":\"10.1145/3203217.3203264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies have demonstrated the effectiveness of Hardware Performance Counters (HPCs) for detecting pattern of malicious applications. Hardware-supported detectors utilize Machine Learning (ML) classifiers for malware detection by analyzing a large number of HPC features, more than the very limited number of HPC registers available in modern microprocessors. Obtaining more HPCs requires running the application (malware or benign) more than once to collect the required data, which in turn makes the solution less practical for run-time detection of malware. In response to this challenge, in this work, we first identify the critical HPC features required for malware detection. Next, we explore the use of various ML techniques to classify benign and malware applications using the selected HPCs at run-time. Further, we investigate the effectiveness of ensemble learning in improving the performance of ML classifiers. For this purpose, we apply AdaBoost on all general ML classifiers. We thoroughly compare the general and ensemble ML classifiers in terms of accuracy, robustness, performance, and hardware overhead. The experimental results indicate that ensemble learning enhances the performance of malware detection for rule-based and tree-based algorithms up to 13%. However, it diminishes the performance of neural network and Bayesian network-based detectors by 6% and 4%, respectively.\",\"PeriodicalId\":127096,\"journal\":{\"name\":\"Proceedings of the 15th ACM International Conference on Computing Frontiers\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 15th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3203217.3203264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3203217.3203264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

最近的研究已经证明了硬件性能计数器(hpc)在检测恶意应用程序模式方面的有效性。硬件支持的检测器利用机器学习(ML)分类器通过分析大量HPC特征进行恶意软件检测,而不是现代微处理器中可用的非常有限的HPC寄存器数量。获得更多的hpc需要多次运行应用程序(恶意软件或良性)来收集所需的数据,这反过来又使解决方案在运行时检测恶意软件时不太实用。为了应对这一挑战,在这项工作中,我们首先确定了恶意软件检测所需的关键HPC功能。接下来,我们将探索使用各种ML技术在运行时使用选定的hpc对良性和恶意应用程序进行分类。进一步,我们研究了集成学习在提高机器学习分类器性能方面的有效性。为此,我们在所有通用ML分类器上应用AdaBoost。我们在准确性、鲁棒性、性能和硬件开销方面全面比较了通用和集成ML分类器。实验结果表明,集成学习将基于规则和基于树的算法的恶意软件检测性能提高了13%。然而,它将神经网络和基于贝叶斯网络的检测器的性能分别降低了6%和4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive assessment of run-time hardware-supported malware detection using general and ensemble learning
Recent studies have demonstrated the effectiveness of Hardware Performance Counters (HPCs) for detecting pattern of malicious applications. Hardware-supported detectors utilize Machine Learning (ML) classifiers for malware detection by analyzing a large number of HPC features, more than the very limited number of HPC registers available in modern microprocessors. Obtaining more HPCs requires running the application (malware or benign) more than once to collect the required data, which in turn makes the solution less practical for run-time detection of malware. In response to this challenge, in this work, we first identify the critical HPC features required for malware detection. Next, we explore the use of various ML techniques to classify benign and malware applications using the selected HPCs at run-time. Further, we investigate the effectiveness of ensemble learning in improving the performance of ML classifiers. For this purpose, we apply AdaBoost on all general ML classifiers. We thoroughly compare the general and ensemble ML classifiers in terms of accuracy, robustness, performance, and hardware overhead. The experimental results indicate that ensemble learning enhances the performance of malware detection for rule-based and tree-based algorithms up to 13%. However, it diminishes the performance of neural network and Bayesian network-based detectors by 6% and 4%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信