{"title":"无线传感器网络动态能量感知路由协议","authors":"Mahamadi Boulou, Tiguiane Yélémou, Doda Afoussatou Rollande, Hamadoun Tall","doi":"10.1109/SCCIC51516.2020.9377331","DOIUrl":null,"url":null,"abstract":"Sensor network is a set of sensors nodes brought together for multi-hop data transmission to one or more sinks. Wireless sensor networks (WSN) are used in many areas such as smart cities, environmental monitoring, precision agriculture. Once deployed, WSNs are very rigid in terms of reconfiguration. Sofware-Defined Networking (SDN) technology is explored in order to facilitate reconfiguration of WSN nodes. Several architectures have been proposed, among which SDN-WISE. SDN-WISE uses centralized routing model which separates data plane executed by the sensor nodes and the control plane executed by a software program hosted in a controller. In SDN-WISE, data transmission path choice is the best route in terms of the number of hops. Improved variants of SND-WISE use other metrics such as node energy, but the problem with these approaches is that a chosen path is used until one of its nodes depletes its energy before a path change process is initiated. This impacts efficiency of the network and reduces life of the network. In this work, we propose Dynamic Energy Aware Routing Protocol (DEARP) that monitors residual energy of nodes in order to make routing decisions. This will prevent nodes on most stressed paths from running out of its energy quickly while other paths with nodes with higher residual energies could be used. Our approach optimizes lifetime of WSN by preventing most stressed nodes from running out sooner.","PeriodicalId":120154,"journal":{"name":"2020 IEEE 2nd International Conference on Smart Cities and Communities (SCCIC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DEARP: Dynamic Energy Aware Routing Protocol for Wireless Sensor Network\",\"authors\":\"Mahamadi Boulou, Tiguiane Yélémou, Doda Afoussatou Rollande, Hamadoun Tall\",\"doi\":\"10.1109/SCCIC51516.2020.9377331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensor network is a set of sensors nodes brought together for multi-hop data transmission to one or more sinks. Wireless sensor networks (WSN) are used in many areas such as smart cities, environmental monitoring, precision agriculture. Once deployed, WSNs are very rigid in terms of reconfiguration. Sofware-Defined Networking (SDN) technology is explored in order to facilitate reconfiguration of WSN nodes. Several architectures have been proposed, among which SDN-WISE. SDN-WISE uses centralized routing model which separates data plane executed by the sensor nodes and the control plane executed by a software program hosted in a controller. In SDN-WISE, data transmission path choice is the best route in terms of the number of hops. Improved variants of SND-WISE use other metrics such as node energy, but the problem with these approaches is that a chosen path is used until one of its nodes depletes its energy before a path change process is initiated. This impacts efficiency of the network and reduces life of the network. In this work, we propose Dynamic Energy Aware Routing Protocol (DEARP) that monitors residual energy of nodes in order to make routing decisions. This will prevent nodes on most stressed paths from running out of its energy quickly while other paths with nodes with higher residual energies could be used. Our approach optimizes lifetime of WSN by preventing most stressed nodes from running out sooner.\",\"PeriodicalId\":120154,\"journal\":{\"name\":\"2020 IEEE 2nd International Conference on Smart Cities and Communities (SCCIC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 2nd International Conference on Smart Cities and Communities (SCCIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCCIC51516.2020.9377331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 2nd International Conference on Smart Cities and Communities (SCCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCCIC51516.2020.9377331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DEARP: Dynamic Energy Aware Routing Protocol for Wireless Sensor Network
Sensor network is a set of sensors nodes brought together for multi-hop data transmission to one or more sinks. Wireless sensor networks (WSN) are used in many areas such as smart cities, environmental monitoring, precision agriculture. Once deployed, WSNs are very rigid in terms of reconfiguration. Sofware-Defined Networking (SDN) technology is explored in order to facilitate reconfiguration of WSN nodes. Several architectures have been proposed, among which SDN-WISE. SDN-WISE uses centralized routing model which separates data plane executed by the sensor nodes and the control plane executed by a software program hosted in a controller. In SDN-WISE, data transmission path choice is the best route in terms of the number of hops. Improved variants of SND-WISE use other metrics such as node energy, but the problem with these approaches is that a chosen path is used until one of its nodes depletes its energy before a path change process is initiated. This impacts efficiency of the network and reduces life of the network. In this work, we propose Dynamic Energy Aware Routing Protocol (DEARP) that monitors residual energy of nodes in order to make routing decisions. This will prevent nodes on most stressed paths from running out of its energy quickly while other paths with nodes with higher residual energies could be used. Our approach optimizes lifetime of WSN by preventing most stressed nodes from running out sooner.