单腿猫2

P. Scholze, Jared Weinstein
{"title":"单腿猫2","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.16","DOIUrl":null,"url":null,"abstract":"This chapter offers a second lecture on one-legged shtukas. It shows that a shtuka over Spa Cb, a priori defined over Y\n [0,INFINITY) = Spa Ainf REVERSE SOLIDUS {xk, xL}, actually extends to Y = Spa Ainf REVERSE SOLIDUS {xk}. In doing so, the chapter considers the theory of φ‎-modules over the Robba ring, due to Kedlaya. These are in correspondence with vector bundles over the Fargues-Fontaine curve. The chapter then looks at the proposition that the space Y is an adic space. It also sketches a proof that the functor described in Theorem 13.2.1 is fully faithful. This is more general, and works if C is any perfectoid field (not necessarily algebraically closed).","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shtukas with one leg II\",\"authors\":\"P. Scholze, Jared Weinstein\",\"doi\":\"10.2307/j.ctvs32rc9.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter offers a second lecture on one-legged shtukas. It shows that a shtuka over Spa Cb, a priori defined over Y\\n [0,INFINITY) = Spa Ainf REVERSE SOLIDUS {xk, xL}, actually extends to Y = Spa Ainf REVERSE SOLIDUS {xk}. In doing so, the chapter considers the theory of φ‎-modules over the Robba ring, due to Kedlaya. These are in correspondence with vector bundles over the Fargues-Fontaine curve. The chapter then looks at the proposition that the space Y is an adic space. It also sketches a proof that the functor described in Theorem 13.2.1 is fully faithful. This is more general, and works if C is any perfectoid field (not necessarily algebraically closed).\",\"PeriodicalId\":270009,\"journal\":{\"name\":\"Berkeley Lectures on p-adic Geometry\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Berkeley Lectures on p-adic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvs32rc9.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章提供了关于单腿shtukas的第二个讲座。证明了先验定义在Y [0,INFINITY) = Spa Ainf REVERSE SOLIDUS {xk, xL}上的Spa Cb上的shtuka实际上扩展到Y = Spa Ainf REVERSE SOLIDUS {xk}上。在此过程中,本章考虑了Robba环上φ φ -模的理论,这是由Kedlaya引起的。这些与法格斯-方丹曲线上的向量束相对应。然后,本章讨论空间Y是一个进进空间的命题。它还简要地证明了定理13.2.1中描述的函子是完全忠实的。这是更一般的,并且适用于C是任何完美曲面域(不一定是代数封闭的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shtukas with one leg II
This chapter offers a second lecture on one-legged shtukas. It shows that a shtuka over Spa Cb, a priori defined over Y [0,INFINITY) = Spa Ainf REVERSE SOLIDUS {xk, xL}, actually extends to Y = Spa Ainf REVERSE SOLIDUS {xk}. In doing so, the chapter considers the theory of φ‎-modules over the Robba ring, due to Kedlaya. These are in correspondence with vector bundles over the Fargues-Fontaine curve. The chapter then looks at the proposition that the space Y is an adic space. It also sketches a proof that the functor described in Theorem 13.2.1 is fully faithful. This is more general, and works if C is any perfectoid field (not necessarily algebraically closed).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信