{"title":"计算日动态用户平衡的定点方法","authors":"T. Friesz, Pedro A. Neto, Amir H. Meimand","doi":"10.1109/ITSC.2011.6082914","DOIUrl":null,"url":null,"abstract":"We show that analysis of the within-day dynamic user equilibrium (DUE) problem is tremendously simplified by expressing dynamic user equilibrium as a differential variational inequality when dynamic network loading (DNL) is considered to be an embedded subproblem. The DNL problem is approximated as a system of ordinary differential equations (ODEs) which may be efficiently solved using traditional numerical methods. Computing an actual dynamic user equilibrium is shown to require solution of a continuous-time fixed-point problem. A numerical example based on the much studied Sioux Falls network is presented.","PeriodicalId":186596,"journal":{"name":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fixed point methods for computing within-day dynamic user equilibrium\",\"authors\":\"T. Friesz, Pedro A. Neto, Amir H. Meimand\",\"doi\":\"10.1109/ITSC.2011.6082914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that analysis of the within-day dynamic user equilibrium (DUE) problem is tremendously simplified by expressing dynamic user equilibrium as a differential variational inequality when dynamic network loading (DNL) is considered to be an embedded subproblem. The DNL problem is approximated as a system of ordinary differential equations (ODEs) which may be efficiently solved using traditional numerical methods. Computing an actual dynamic user equilibrium is shown to require solution of a continuous-time fixed-point problem. A numerical example based on the much studied Sioux Falls network is presented.\",\"PeriodicalId\":186596,\"journal\":{\"name\":\"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2011.6082914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2011.6082914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fixed point methods for computing within-day dynamic user equilibrium
We show that analysis of the within-day dynamic user equilibrium (DUE) problem is tremendously simplified by expressing dynamic user equilibrium as a differential variational inequality when dynamic network loading (DNL) is considered to be an embedded subproblem. The DNL problem is approximated as a system of ordinary differential equations (ODEs) which may be efficiently solved using traditional numerical methods. Computing an actual dynamic user equilibrium is shown to require solution of a continuous-time fixed-point problem. A numerical example based on the much studied Sioux Falls network is presented.