利用拉格朗日动力学检测携带物体的人

T. Senst, A. Kuhn, H. Theisel, T. Sikora
{"title":"利用拉格朗日动力学检测携带物体的人","authors":"T. Senst, A. Kuhn, H. Theisel, T. Sikora","doi":"10.1109/AVSS.2012.34","DOIUrl":null,"url":null,"abstract":"The availability of dense motion information in computer vision domain allows for the effective application of Lagrangian techniques that have their origin in fluid flow analysis and dynamical systems theory. A well established technique that has been proven to be useful in image-based crowd analysis are Finite Time Lyapunov Exponents (FTLE). Based on this, we present a method to detect people carrying object and describe a methodology how to apply established flow field methods onto the problem of describing individuals. Further, we reinterpret Lagrangian features in relation to the underlying motion process and show their applicability towards the appearance modeling of pedestrians. This definition allows to increase performance of state-of-the-art methods and is shown to be robust under varying parameter settings and different optical flow extraction approaches.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Detecting People Carrying Objects Utilizing Lagrangian Dynamics\",\"authors\":\"T. Senst, A. Kuhn, H. Theisel, T. Sikora\",\"doi\":\"10.1109/AVSS.2012.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of dense motion information in computer vision domain allows for the effective application of Lagrangian techniques that have their origin in fluid flow analysis and dynamical systems theory. A well established technique that has been proven to be useful in image-based crowd analysis are Finite Time Lyapunov Exponents (FTLE). Based on this, we present a method to detect people carrying object and describe a methodology how to apply established flow field methods onto the problem of describing individuals. Further, we reinterpret Lagrangian features in relation to the underlying motion process and show their applicability towards the appearance modeling of pedestrians. This definition allows to increase performance of state-of-the-art methods and is shown to be robust under varying parameter settings and different optical flow extraction approaches.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

计算机视觉领域中密集运动信息的可用性使得拉格朗日技术的有效应用成为可能。拉格朗日技术起源于流体流动分析和动力系统理论。有限时间李雅普诺夫指数(FTLE)是一种成熟的技术,已被证明在基于图像的人群分析中很有用。在此基础上,提出了一种携带物体的人的检测方法,并描述了一种将已有的流场方法应用于个体描述问题的方法。此外,我们重新解释了与潜在运动过程相关的拉格朗日特征,并展示了它们对行人外观建模的适用性。该定义允许提高最先进的方法的性能,并在不同的参数设置和不同的光流提取方法下显示出鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting People Carrying Objects Utilizing Lagrangian Dynamics
The availability of dense motion information in computer vision domain allows for the effective application of Lagrangian techniques that have their origin in fluid flow analysis and dynamical systems theory. A well established technique that has been proven to be useful in image-based crowd analysis are Finite Time Lyapunov Exponents (FTLE). Based on this, we present a method to detect people carrying object and describe a methodology how to apply established flow field methods onto the problem of describing individuals. Further, we reinterpret Lagrangian features in relation to the underlying motion process and show their applicability towards the appearance modeling of pedestrians. This definition allows to increase performance of state-of-the-art methods and is shown to be robust under varying parameter settings and different optical flow extraction approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信