{"title":"利用拉格朗日动力学检测携带物体的人","authors":"T. Senst, A. Kuhn, H. Theisel, T. Sikora","doi":"10.1109/AVSS.2012.34","DOIUrl":null,"url":null,"abstract":"The availability of dense motion information in computer vision domain allows for the effective application of Lagrangian techniques that have their origin in fluid flow analysis and dynamical systems theory. A well established technique that has been proven to be useful in image-based crowd analysis are Finite Time Lyapunov Exponents (FTLE). Based on this, we present a method to detect people carrying object and describe a methodology how to apply established flow field methods onto the problem of describing individuals. Further, we reinterpret Lagrangian features in relation to the underlying motion process and show their applicability towards the appearance modeling of pedestrians. This definition allows to increase performance of state-of-the-art methods and is shown to be robust under varying parameter settings and different optical flow extraction approaches.","PeriodicalId":275325,"journal":{"name":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Detecting People Carrying Objects Utilizing Lagrangian Dynamics\",\"authors\":\"T. Senst, A. Kuhn, H. Theisel, T. Sikora\",\"doi\":\"10.1109/AVSS.2012.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of dense motion information in computer vision domain allows for the effective application of Lagrangian techniques that have their origin in fluid flow analysis and dynamical systems theory. A well established technique that has been proven to be useful in image-based crowd analysis are Finite Time Lyapunov Exponents (FTLE). Based on this, we present a method to detect people carrying object and describe a methodology how to apply established flow field methods onto the problem of describing individuals. Further, we reinterpret Lagrangian features in relation to the underlying motion process and show their applicability towards the appearance modeling of pedestrians. This definition allows to increase performance of state-of-the-art methods and is shown to be robust under varying parameter settings and different optical flow extraction approaches.\",\"PeriodicalId\":275325,\"journal\":{\"name\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS.2012.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Ninth International Conference on Advanced Video and Signal-Based Surveillance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2012.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detecting People Carrying Objects Utilizing Lagrangian Dynamics
The availability of dense motion information in computer vision domain allows for the effective application of Lagrangian techniques that have their origin in fluid flow analysis and dynamical systems theory. A well established technique that has been proven to be useful in image-based crowd analysis are Finite Time Lyapunov Exponents (FTLE). Based on this, we present a method to detect people carrying object and describe a methodology how to apply established flow field methods onto the problem of describing individuals. Further, we reinterpret Lagrangian features in relation to the underlying motion process and show their applicability towards the appearance modeling of pedestrians. This definition allows to increase performance of state-of-the-art methods and is shown to be robust under varying parameter settings and different optical flow extraction approaches.