进化人工势场及其在机器人实时路径规划中的应用

P. Vadakkepat, K. Tan, Ming-Liang Wang
{"title":"进化人工势场及其在机器人实时路径规划中的应用","authors":"P. Vadakkepat, K. Tan, Ming-Liang Wang","doi":"10.1109/CEC.2000.870304","DOIUrl":null,"url":null,"abstract":"A new methodology named Evolutionary Artificial Potential Field (EAPF) is proposed for real-time robot path planning. The artificial potential field method is combined with genetic algorithms, to derive optimal potential field functions. The proposed EAPF approach is capable of navigating robot(s) situated among moving obstacles. Potential field functions for obstacles and goal points are also defined. The potential field functions for obstacles contain tunable parameters. The multi-objective evolutionary algorithm (MOEA) is utilized to identify the optimal potential field functions. Fitness functions such as goal-factor, obstacle-factor, smoothness-factor and minimum-pathlength-factor are developed for the MOEA selection criteria. An algorithm named escape-force is introduced to avoid the local minima associated with EAPF. Moving obstacles and moving goal positions were considered to test the robust performance of the proposed methodology. Simulation results show that the proposed methodology is efficient and robust for robot path planning with non-stationary goals and obstacles.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"349","resultStr":"{\"title\":\"Evolutionary artificial potential fields and their application in real time robot path planning\",\"authors\":\"P. Vadakkepat, K. Tan, Ming-Liang Wang\",\"doi\":\"10.1109/CEC.2000.870304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new methodology named Evolutionary Artificial Potential Field (EAPF) is proposed for real-time robot path planning. The artificial potential field method is combined with genetic algorithms, to derive optimal potential field functions. The proposed EAPF approach is capable of navigating robot(s) situated among moving obstacles. Potential field functions for obstacles and goal points are also defined. The potential field functions for obstacles contain tunable parameters. The multi-objective evolutionary algorithm (MOEA) is utilized to identify the optimal potential field functions. Fitness functions such as goal-factor, obstacle-factor, smoothness-factor and minimum-pathlength-factor are developed for the MOEA selection criteria. An algorithm named escape-force is introduced to avoid the local minima associated with EAPF. Moving obstacles and moving goal positions were considered to test the robust performance of the proposed methodology. Simulation results show that the proposed methodology is efficient and robust for robot path planning with non-stationary goals and obstacles.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"349\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 349

摘要

提出了一种基于进化人工势场的机器人实时路径规划方法。将人工势场法与遗传算法相结合,求出最优势场函数。所提出的EAPF方法能够导航位于移动障碍物中的机器人。定义了障碍物和目标点的势场函数。障碍物的势场函数包含可调参数。采用多目标进化算法(MOEA)识别最优势场函数。针对MOEA选择标准,建立了目标因子、障碍因子、平滑因子和最小路径长度因子等适应度函数。为了避免与EAPF相关的局部极小值,引入了逃逸力算法。考虑了移动障碍物和移动目标位置,测试了所提方法的鲁棒性。仿真结果表明,该方法对于具有非平稳目标和障碍物的机器人路径规划具有良好的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolutionary artificial potential fields and their application in real time robot path planning
A new methodology named Evolutionary Artificial Potential Field (EAPF) is proposed for real-time robot path planning. The artificial potential field method is combined with genetic algorithms, to derive optimal potential field functions. The proposed EAPF approach is capable of navigating robot(s) situated among moving obstacles. Potential field functions for obstacles and goal points are also defined. The potential field functions for obstacles contain tunable parameters. The multi-objective evolutionary algorithm (MOEA) is utilized to identify the optimal potential field functions. Fitness functions such as goal-factor, obstacle-factor, smoothness-factor and minimum-pathlength-factor are developed for the MOEA selection criteria. An algorithm named escape-force is introduced to avoid the local minima associated with EAPF. Moving obstacles and moving goal positions were considered to test the robust performance of the proposed methodology. Simulation results show that the proposed methodology is efficient and robust for robot path planning with non-stationary goals and obstacles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信