{"title":"粗粒重构:混合门控系统的功率估计和管理流程","authors":"Tiziana Fanni, L. Raffo","doi":"10.1109/ReConFig.2016.7857160","DOIUrl":null,"url":null,"abstract":"This work presents an automatic power estimation and implementation flow for coarse-grained reconfigurable systems, capable of guiding designers towards the optimal implementation of power-efficient systems. The entire flow is assessed over the reconfigurable computing core of a dedicated image processing accelerator, targeting an ASIC 45 nm technology.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse grain reconfiguration: Power estimation and management flow for hybrid gated systems\",\"authors\":\"Tiziana Fanni, L. Raffo\",\"doi\":\"10.1109/ReConFig.2016.7857160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents an automatic power estimation and implementation flow for coarse-grained reconfigurable systems, capable of guiding designers towards the optimal implementation of power-efficient systems. The entire flow is assessed over the reconfigurable computing core of a dedicated image processing accelerator, targeting an ASIC 45 nm technology.\",\"PeriodicalId\":431909,\"journal\":{\"name\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2016.7857160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coarse grain reconfiguration: Power estimation and management flow for hybrid gated systems
This work presents an automatic power estimation and implementation flow for coarse-grained reconfigurable systems, capable of guiding designers towards the optimal implementation of power-efficient systems. The entire flow is assessed over the reconfigurable computing core of a dedicated image processing accelerator, targeting an ASIC 45 nm technology.