{"title":"一种计算效率高的U-Net结构用于胸片肺分割","authors":"B. Narayanan, R. Hardie","doi":"10.1109/NAECON46414.2019.9058086","DOIUrl":null,"url":null,"abstract":"Lung segmentation plays a crucial role in computer-aided diagnosis using Chest Radiographs (CRs). We implement a U-Net architecture for lung segmentation in CRs across multiple publicly available datasets. We utilize a private dataset with 160 CRs provided by the Riverain Medical Group for training purposes. A publicly available dataset provided by the Japanese Radiological Scientific Technology (JRST) is used for testing. The active shape model-based results would serve as the ground truth for both these datasets. In addition, we also study the performance of our algorithm on a publicly available Shenzhen dataset which contains 566 CRs with manually segmented lungs (ground truth). Our overall performance in terms of pixel-based classification is about 98.3% and 95.6% for a set of 100 CRs in Shenzhen dataset and 140 CRs in JRST dataset. We also achieve an intersection over union value of 0.95 at a computation time of 8 seconds for the entire suite of Shenzhen testing cases.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Computationally Efficient U-Net Architecture for Lung Segmentation in Chest Radiographs\",\"authors\":\"B. Narayanan, R. Hardie\",\"doi\":\"10.1109/NAECON46414.2019.9058086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung segmentation plays a crucial role in computer-aided diagnosis using Chest Radiographs (CRs). We implement a U-Net architecture for lung segmentation in CRs across multiple publicly available datasets. We utilize a private dataset with 160 CRs provided by the Riverain Medical Group for training purposes. A publicly available dataset provided by the Japanese Radiological Scientific Technology (JRST) is used for testing. The active shape model-based results would serve as the ground truth for both these datasets. In addition, we also study the performance of our algorithm on a publicly available Shenzhen dataset which contains 566 CRs with manually segmented lungs (ground truth). Our overall performance in terms of pixel-based classification is about 98.3% and 95.6% for a set of 100 CRs in Shenzhen dataset and 140 CRs in JRST dataset. We also achieve an intersection over union value of 0.95 at a computation time of 8 seconds for the entire suite of Shenzhen testing cases.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9058086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Computationally Efficient U-Net Architecture for Lung Segmentation in Chest Radiographs
Lung segmentation plays a crucial role in computer-aided diagnosis using Chest Radiographs (CRs). We implement a U-Net architecture for lung segmentation in CRs across multiple publicly available datasets. We utilize a private dataset with 160 CRs provided by the Riverain Medical Group for training purposes. A publicly available dataset provided by the Japanese Radiological Scientific Technology (JRST) is used for testing. The active shape model-based results would serve as the ground truth for both these datasets. In addition, we also study the performance of our algorithm on a publicly available Shenzhen dataset which contains 566 CRs with manually segmented lungs (ground truth). Our overall performance in terms of pixel-based classification is about 98.3% and 95.6% for a set of 100 CRs in Shenzhen dataset and 140 CRs in JRST dataset. We also achieve an intersection over union value of 0.95 at a computation time of 8 seconds for the entire suite of Shenzhen testing cases.