一种计算效率高的U-Net结构用于胸片肺分割

B. Narayanan, R. Hardie
{"title":"一种计算效率高的U-Net结构用于胸片肺分割","authors":"B. Narayanan, R. Hardie","doi":"10.1109/NAECON46414.2019.9058086","DOIUrl":null,"url":null,"abstract":"Lung segmentation plays a crucial role in computer-aided diagnosis using Chest Radiographs (CRs). We implement a U-Net architecture for lung segmentation in CRs across multiple publicly available datasets. We utilize a private dataset with 160 CRs provided by the Riverain Medical Group for training purposes. A publicly available dataset provided by the Japanese Radiological Scientific Technology (JRST) is used for testing. The active shape model-based results would serve as the ground truth for both these datasets. In addition, we also study the performance of our algorithm on a publicly available Shenzhen dataset which contains 566 CRs with manually segmented lungs (ground truth). Our overall performance in terms of pixel-based classification is about 98.3% and 95.6% for a set of 100 CRs in Shenzhen dataset and 140 CRs in JRST dataset. We also achieve an intersection over union value of 0.95 at a computation time of 8 seconds for the entire suite of Shenzhen testing cases.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A Computationally Efficient U-Net Architecture for Lung Segmentation in Chest Radiographs\",\"authors\":\"B. Narayanan, R. Hardie\",\"doi\":\"10.1109/NAECON46414.2019.9058086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung segmentation plays a crucial role in computer-aided diagnosis using Chest Radiographs (CRs). We implement a U-Net architecture for lung segmentation in CRs across multiple publicly available datasets. We utilize a private dataset with 160 CRs provided by the Riverain Medical Group for training purposes. A publicly available dataset provided by the Japanese Radiological Scientific Technology (JRST) is used for testing. The active shape model-based results would serve as the ground truth for both these datasets. In addition, we also study the performance of our algorithm on a publicly available Shenzhen dataset which contains 566 CRs with manually segmented lungs (ground truth). Our overall performance in terms of pixel-based classification is about 98.3% and 95.6% for a set of 100 CRs in Shenzhen dataset and 140 CRs in JRST dataset. We also achieve an intersection over union value of 0.95 at a computation time of 8 seconds for the entire suite of Shenzhen testing cases.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9058086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

肺分割在胸片计算机辅助诊断中起着至关重要的作用。我们实现了一个U-Net架构,用于跨多个公开可用数据集的cr肺分割。我们利用Riverain医疗集团提供的包含160个cr的私人数据集进行培训。测试使用了日本放射科学技术(JRST)提供的公开数据集。基于活动形状模型的结果将作为这两个数据集的基础事实。此外,我们还研究了我们的算法在一个公开可用的深圳数据集上的性能,该数据集包含566个人工分割肺(地面真实值)的cr。在深圳数据集的100个CRs和JRST数据集的140个CRs中,我们在基于像素的分类方面的总体性能分别为98.3%和95.6%。我们还在深圳测试用例的整个套件的计算时间为8秒的情况下实现了0.95的交联值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computationally Efficient U-Net Architecture for Lung Segmentation in Chest Radiographs
Lung segmentation plays a crucial role in computer-aided diagnosis using Chest Radiographs (CRs). We implement a U-Net architecture for lung segmentation in CRs across multiple publicly available datasets. We utilize a private dataset with 160 CRs provided by the Riverain Medical Group for training purposes. A publicly available dataset provided by the Japanese Radiological Scientific Technology (JRST) is used for testing. The active shape model-based results would serve as the ground truth for both these datasets. In addition, we also study the performance of our algorithm on a publicly available Shenzhen dataset which contains 566 CRs with manually segmented lungs (ground truth). Our overall performance in terms of pixel-based classification is about 98.3% and 95.6% for a set of 100 CRs in Shenzhen dataset and 140 CRs in JRST dataset. We also achieve an intersection over union value of 0.95 at a computation time of 8 seconds for the entire suite of Shenzhen testing cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信