Sumanth Reddy Poluri, Venkata Krishna Reddy Tiyyagura, K. S. Sri
{"title":"基于机器学习的心脏病预测","authors":"Sumanth Reddy Poluri, Venkata Krishna Reddy Tiyyagura, K. S. Sri","doi":"10.1109/IConSCEPT57958.2023.10170410","DOIUrl":null,"url":null,"abstract":"An accurate model for DBSCAN (Outlier detection and removal). And implementing KNN by predicting the suitable k value. While SMOTE-ENN is used to balance the training dataset. Gradient boosting is a technique where new models are made and used to forecast the residuals or error, then the scores are added to find the presence or absence of disease. And implementing KNN by predicting the suitable k value. The model was built using few publicly accessible datasets, Statlog, heart failure clinical records datasets and Cleveland. These respective models output was compared to Each other respectively.","PeriodicalId":240167,"journal":{"name":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heart Disease Prediction Based On Machine Learning\",\"authors\":\"Sumanth Reddy Poluri, Venkata Krishna Reddy Tiyyagura, K. S. Sri\",\"doi\":\"10.1109/IConSCEPT57958.2023.10170410\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate model for DBSCAN (Outlier detection and removal). And implementing KNN by predicting the suitable k value. While SMOTE-ENN is used to balance the training dataset. Gradient boosting is a technique where new models are made and used to forecast the residuals or error, then the scores are added to find the presence or absence of disease. And implementing KNN by predicting the suitable k value. The model was built using few publicly accessible datasets, Statlog, heart failure clinical records datasets and Cleveland. These respective models output was compared to Each other respectively.\",\"PeriodicalId\":240167,\"journal\":{\"name\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IConSCEPT57958.2023.10170410\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IConSCEPT57958.2023.10170410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Heart Disease Prediction Based On Machine Learning
An accurate model for DBSCAN (Outlier detection and removal). And implementing KNN by predicting the suitable k value. While SMOTE-ENN is used to balance the training dataset. Gradient boosting is a technique where new models are made and used to forecast the residuals or error, then the scores are added to find the presence or absence of disease. And implementing KNN by predicting the suitable k value. The model was built using few publicly accessible datasets, Statlog, heart failure clinical records datasets and Cleveland. These respective models output was compared to Each other respectively.